FRACTIONAL MULTIVARIATE OPIAL TYPE INEQUALITIES OVER SPHERICAL SHELLS

George A. Anastassiou
Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, USA
ganastss@memphis.edu

Communicated by S.I. Nenov

ABSTRACT: Here is introduced the concept of multivariate fractional differentiation especially of the fractional radial differentiation, by extending the univariate definition of Canavati [11]. Then we produce Opial type inequalities over compact and convex subsets of \(\mathbb{R}^N \), \(N \geq 2 \), mainly over spherical shells, studying the problem in all possibilities. Our results involve one, or two, or more functions.

AMS (MOS) Subject Classification: 26A33, 26D10, 26D15

1. INTRODUCTION

This work is motivated by the articles of Opial [12], Beesack [10], and Anastassiou [3]-[9].

We would like to mention Theorem 1.1.

Theorem 1.1. (see Opial [12], 1960) Let \(c > 0 \), and \(y(x) \) be real, continuously differentiable on \([0, c]\), with \(y(0) = y(c) = 0 \). Then

\[
\int_0^c |y(x)y'(x)|\,dx \leq \frac{c}{4} \int_0^c (y'(x))^2\,dx.
\]

Equality holds for the function \(y(x) = x \) on \([0, c/2]\), and \(y(x) = c - x \) on \([c/2, c]\).

The next result implies Theorem 1.1 and is used a lot in applications.

Theorem 1.2. (see Beesack [10], 1962) Let \(b > 0 \), If \(y(x) \) is real, continuously differentiable on \([0, b]\), and \(y(0) = 0 \) then

\[
\int_0^b |y(x)y'(x)|\,dx \leq \frac{b}{2} \int_0^b (y'(x))^2\,dx.
\]

Equality holds only for \(y = mx \), where \(m \) is a constant.

We describe here our specific multivariate setting. Let the balls \(B(0, R_1), B(0, R_2) \); \(0 < R_1 < R_2 \). Here \(B(0, R) := \{ x \in \mathbb{R}^N : |x| < R \} \subseteq \mathbb{R}^N \), \(N \geq 2 \), \(R > 0 \), and...
We consider here the space \(S^{N-1} := \{ x \in \mathbb{R}^N : |x| = 1 \} \), where \(| \cdot |\) is the Euclidean norm. Let \(d\omega \) be the element of surface measure on \(S^{N-1} \) and let \(\omega_N = \int_{S^{N-1}} d\omega = \frac{2\pi^{N/2}}{\Gamma(N/2)} \).

For \(x \in \mathbb{R}^N \setminus \{ 0 \} \) we can write uniquely \(x = r\omega \), where \(r = |x| > 0 \), and \(\omega = \frac{x}{r} \in S^{N-1} \), \(|\omega| = 1\).

Let the *spherical shell* \(A := B(0, R_2) - \overline{B(0, R_1)} \). We have that \(\text{Vol}(A) = \frac{\omega_N(R_2^N - R_1^N)}{N} \). Indeed \(\hat{A} = [R_1, R_2] \times S^{N-1} \).

For \(F \in C(\hat{A}) \) it holds

\[
\int_A F(x)dx = \int_{S^{N-1}} \left(\int_{R_1}^{R_2} F(r\omega)r^{N-1}dr \right) d\omega,
\]

we exploit a lot this formula here.

In this article we present a series of various fractional multivariate Opial type inequalities over spherical shells and arbitrary domains. Opial type inequalities find applications in establishing uniqueness of solution of initial value problems for differential equations and their systems, see Willett [13].

2. RESULTS

We make

Remark 2.1. We introduce here the *partial fractional derivatives*. Let \(f : [0, 1]^2 \to \mathbb{R} \). Let \(\nu > 0 \), \(n := [\nu] \), \(\alpha := \nu - n \), \(0 < \alpha < 1 \); \(\mu > 0 \), \(m := [\mu] \), \(\beta := \mu - m \), \(0 < \beta < 1 \). Assume \(\exists \frac{\partial^{n+m}f(t, s)}{\partial x^n \partial y^m} \in C([0, 1]^2) \), then \((x-t)^{-\alpha}(y-s)^{-\beta} \frac{\partial^{n+m}f(t, s)}{\partial x^n \partial y^m} \) is integrable over \([0, x] \times [0, y]; x, y \in [0, 1] \), that is

\[
F(x, y) := \int_0^x \int_0^y (x-t)^{-\alpha}(y-s)^{-\beta} \frac{\partial^{n+m}f(t, s)}{\partial x^n \partial y^m} dt ds
\]

is real valued.

Thus, by Fubini’s Theorem, the order of integration in (2.1) does not matter.

Let now \(g \in C([0, 1]) \), we define the *Riemann-Liouville integral*, \(\Gamma \) is the gamma function: \(\Gamma(\nu) := \int_0^\infty e^{-t}t^{\nu-1}dt \), as

\[
(J_\nu g)(x) := \frac{1}{\Gamma(\nu)} \int_0^x (x-t)^{\nu-1}g(t)dt, \quad 0 \leq x \leq 1.
\]

We consider here the space

\[
C^\nu([0, 1]) := \{ g \in C^n([0, 1]) : J_{1-\alpha} g^{(n)} \in C^1([0, 1]) \},
\]

then the \(\nu \)-*fractional derivative of* \(g \) is defined by \(g^{(\nu)} := (J_{1-\alpha} g^{(n)})' \), see Canavati [11].

We assume here \(f(\cdot, y) \in C^\nu([0, 1]), \forall y \in [0, 1] \), then we define the \(\nu \)-*partial fractional derivative* of \(f \) with respect to \(x \) \(\frac{\partial^\nu f(x, y)}{\partial x^\nu} \) as

\[
\frac{\partial^\nu f(x, y)}{\partial x^\nu} := \frac{\partial}{\partial x} \left(J_{1-\alpha} \frac{\partial^n f(x, y)}{\partial x^n} \right), \quad \forall (x, y) \in [0, 1]^2.
\]
Also, we assume \(f(x, \cdot) \in C^\mu([0, 1]), \forall x \in [0, 1], \) where
\[
C^\mu([0, 1]) := \{ g \in C^m([0, 1]) : J_{1-\beta}g^{(m)} \in C^1([0, 1]) \}. \tag{2.5}
\]

Then we define the \(\mu \)-partial fractional derivative of \(f \) with respect to \(y \): \(\frac{\partial f^\mu}{\partial y^\mu}(x, \cdot) \)
as
\[
\frac{\partial f^\mu(x, y)}{\partial y^\mu} := \frac{\partial}{\partial y} \left(J_{1-\beta} \frac{\partial f^m}{\partial y^m}(x, y) \right), \quad \forall (x, y) \in [0, 1]^2. \tag{2.6}
\]

Define the space
\[
C^{\nu+\mu}([0, 1]^2) := \{ f \in C^{n+m}([0, 1]^2) :
J_{1-\alpha} \left(\frac{\partial^n f(\cdot, y)}{\partial x^n} \right) \in C^1([0, 1]), \forall y \in [0, 1];
J_{1-\beta} \left(\frac{\partial^m f(x, \cdot)}{\partial x^m} \right) \in C^1([0, 1]), \forall x \in [0, 1];
\exists F_x, F_y, F_{yx} \in C([0, 1]^2) \}. \tag{2.7}
\]

Define the mixed fractional partial derivative:
\[
\frac{\partial^{\nu+\mu} f(x, y)}{\partial x^\nu \partial y^\mu} := \frac{1}{\Gamma(1-\alpha) \Gamma(1-\beta)} \frac{\partial^2}{\partial x \partial y} \int_0^x \int_0^y (x-t)^{-\alpha}(y-s)^{-\beta} \frac{\partial^{n+m} f(t, s)}{\partial x^n \partial y^m} dt ds. \tag{2.8}
\]

One can have anchor points \(x_0, y_0 \neq 0 \), then all above definitions go through for \(x \geq x_0, y \geq y_0 \).

Conclusion 1. Clearly then we have \(F_{xy} = F_{yx} \), and
\[
\frac{\partial^{\nu+\mu} f}{\partial x^\nu \partial y^\mu} = \frac{\partial^{\nu+\mu} f}{\partial y^\nu \partial x^\mu}. \tag{2.9}
\]

So the order of fractional differentiation is immaterial.

Here, it is by definition
\[
\frac{\partial^{\nu+\mu} f(x, y)}{\partial y^\mu \partial x^\nu} := \frac{1}{\Gamma(1-\alpha) \Gamma(1-\beta)} \frac{\partial^2}{\partial y \partial x} \int_0^x \int_0^y (x-t)^{-\alpha}(y-s)^{-\beta} \frac{\partial^{n+m} f(t, s)}{\partial y^n \partial x^m} dt ds. \tag{2.10}
\]

Comments. 1) Let \(\nu = 0 \), then \(n = \alpha = 0 \), and (2.8) becomes
\[
\frac{\partial^\mu f(x, y)}{\partial y^\mu} = \frac{1}{\Gamma(1-\beta)} \frac{\partial^2}{\partial x \partial y} \int_0^x \int_0^y (y-s)^{-\beta} \frac{\partial^m f(t, s)}{\partial y^m} dt ds
= \frac{1}{\Gamma(1-\beta)} \frac{\partial^2}{\partial y \partial x} \int_0^x \int_0^y (y-s)^{-\beta} \frac{\partial^m f(t, s)}{\partial y^m} dt ds
= \frac{1}{\Gamma(1-\beta)} \left(\frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} \int_0^x (y-s)^{-\beta} \frac{\partial^m f(t, s)}{\partial y^m} dt ds \right) \right) =: (*). \tag{2.11}
\]
Notice for fixed \(y \) we have that \((y - s)^{-\beta} \frac{\partial^m f(t, s)}{\partial y^m} \) is integrable over \([0, y] \), so the function

\[
\varphi(t) := \int_0^y (y - s)^{-\beta} \frac{\partial^m f(t, s)}{\partial y^m} \, ds
\]

(2.12)
is real valued for any \(t \in [0, x] \).

By continuity of \(\frac{\partial^m f}{\partial y^m} \) we have true that \(\forall \varepsilon > 0 \) \(\exists \delta > 0 \) : whenever \(|t_1 - t_2| < \delta \) we have

\[
\left| \frac{\partial^m f(t_1, s)}{\partial y^m} - \frac{\partial^m f(t_2, s)}{\partial y^m} \right| < \varepsilon.
\]

We further have

\[
\varphi(t_1) - \varphi(t_2) = \int_0^y (y - s)^{-\beta} \left(\frac{\partial^m f(t_1, s)}{\partial y^m} - \frac{\partial^m f(t_2, s)}{\partial y^m} \right) \, ds.
\]

Hence

\[
|\varphi(t_1) - \varphi(t_2)| \leq \int_0^y (y - s)^{-\beta} \left| \frac{\partial^m f(t_1, s)}{\partial y^m} - \frac{\partial^m f(t_2, s)}{\partial y^m} \right| \, ds
\]

\[
\leq \varepsilon \int_0^y (y - s)^{-\beta} \, ds = \frac{\varepsilon y^{1-\beta}}{1-\beta},
\]

(2.13)

proving \(\varphi(t) \) is continuous.

Consequently

\[
(\star) = \frac{1}{\Gamma(1 - \beta)} \left(\frac{\partial}{\partial y} \left(\int_0^y (y - s)^{-\beta} \frac{\partial^m f(x, s, t; y)}{\partial y^m} \, ds \right) \right) =: \frac{\partial^m f(x, y)}{\partial y^m}.
\]

(2.14)

Conclusion 2. When \(\nu = 0 \), the fractional mixed partial derivative collapses to the single fractional partial derivative.

2) Let \(\mu = 0 \), then \(m = \beta = 0 \), and (2.8) becomes

\[
\frac{\partial^\nu f(x, y)}{\partial x^\nu} = \frac{1}{\Gamma(1 - \alpha)} \frac{\partial^2}{\partial x \partial y} \int_0^x \int_0^y (x - t)^{-\alpha} \frac{\partial^m f(t, s)}{\partial x^m} \, dt \, ds
\]

\[
= \frac{1}{\Gamma(1 - \alpha)} \left(\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(\int_0^y \left(\int_0^x (x - t)^{-\alpha} \frac{\partial^m f(t, s)}{\partial x^m} \, dt \right) \, ds \right) \right) \right)
\]

(2.15)

(notice \(\int_0^x (x - t)^{-\alpha} \frac{\partial^m f(t, s)}{\partial x^m} \, dt \) is continuous in \(s \in [0, y] \))

\[
= \frac{1}{\Gamma(1 - \alpha)} \left(\frac{\partial}{\partial x} \left(\int_0^x (x - t)^{-\alpha} \frac{\partial^m f(t, y)}{\partial x^m} \, dt \right) \right) =: \frac{\partial^\nu f(x, y)}{\partial x^\nu}.
\]

(2.16)

Conclusion 3. When \(\mu = 0 \), the mixed fractional derivative collapses again to the single one.

3) Let now \(n = \nu \in \mathbb{N} \), i.e. \(\alpha = 0 \), then

\[
\frac{\partial^\nu f(x, y)}{\partial x^\nu} = \frac{\partial}{\partial x} \left(\int_0^x \frac{\partial^\nu f(t, y)}{\partial x^\nu} \, dt \right) = \frac{\partial^n f(x, y)}{\partial x^n},
\]

(2.17)

the ordinary one.

4) When \(m = \mu \in \mathbb{N} \), i.e. \(\beta = 0 \), then

\[
\frac{\partial^\mu f(x, y)}{\partial y^\mu} = \frac{\partial}{\partial y} \int_0^y \frac{\partial^\mu f(x, s)}{\partial y^\mu} \, ds = \frac{\partial^m f(x, y)}{\partial y^m},
\]

(2.18)

the ordinary one.
5) Furthermore, let finally both \(\nu = n \in \mathbb{N} \) and \(\mu = m \in \mathbb{N} \), i.e. \(\alpha = \beta = 0 \). Then

\[
\frac{\partial^{\nu+\mu} f(x, y)}{\partial x^{\nu} \partial y^{\mu}} = \frac{\partial^2}{\partial x \partial y} \int_0^x \int_0^y \frac{\partial^{n+m} f(t, s)}{\partial x^n \partial y^m} \, dt \, ds
\]

\[
= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(\int_0^y \left(\int_0^x \frac{\partial^{n+m} f(t, s)}{\partial x^n \partial y^m} \, dt \right) \, ds \right) \right)
\]

\[
= \frac{\partial}{\partial x} \left(\int_0^x \frac{\partial^{n+m} f(t, y)}{\partial x^n \partial y^m} \, dt \right) = \frac{\partial^{n+m} f(x, y)}{\partial x^n \partial y^m},
\]

proving the that fractional mixed partial collapses to the ordinary one. Fractional differentiation is a linear operation.

Conclusion 4. The above definitions we gave for the fractional partial derivatives are natural extensions of the ordinary positive integer ones.

Having introduced the fractional partial derivatives we are ready to develop our Opial type results.

We make

Remark 2.2. First we consider a general domain. Let \(Q \) be a compact and convex subset of \(\mathbb{R}^N \), \(N \geq 2 \); \(z := (z_1, \ldots, z_N) \), \(x_0 := (x_{01}, \ldots, x_{0N}) \in Q \) be fixed. Let \(f \in C^n(Q) \), \(n \in \mathbb{N} \). Set \(g_z(t) = f(x_0 + t(z - x_0)) \), \(0 \leq t \leq 1 \);

\[
g_z(0) = f(x_0), \quad g_z(1) = f(z).
\]

Then it holds

\[
g_z^{(j)}(t) = \left(\sum_{i=1}^N (z_i - x_{0i}) \frac{\partial}{\partial x_i} \right)^j f(x_0 + t(z - x_0)),
\]

where \(j = 0, 1, 2, \ldots, n \), and in particular

\[
g_z'(t) = \sum_{i=1}^N (z_i - x_{0i}) \frac{\partial f}{\partial x_i}(x_0 + t(z - x_0)),
\]

\(0 \leq t \leq 1 \).

Clearly here \(g_z \in C^n([0, 1]). \) Let first \(1 \leq \nu < 2 \), in that case we take \(n := [\nu] = 1 \). Following Anastassiou [2] and by assuming that as function of \(t : f_{x_i}(x_0 + t(z - x_0)) \in C^{\nu-1}([0, 1]) \), \(i = 1, \ldots, N \), then there exists \(g_z^{(\nu)} = (\mathcal{J}_{2-\nu} g_z')(\nu) \), and it holds

\[
g_z^{(\nu)}(t) = \sum_{i=1}^N (z_i - x_{0i}) \left(\frac{\partial f}{\partial x_i}(x_0 + t(z - x_0)) \right)^{(\nu-1)};
\]

\(0 \leq t \leq 1 \).

Also here we have

\[
(\mathcal{J}_{2-\nu} g_z')(t) = \frac{\sum_{i=1}^N (z_i - x_{0i})}{\Gamma(2 - \nu)} \int_0^t (t - s)^{1-\nu} f_{x_i}(x_0 + s(z - x_0)) \, ds,
\]

\(0 \leq t \leq 1 \).
Remark 2.2.Obviously \((\mathcal{J}_{2-\nu} g_z^n(t)) \in C^1([0, 1])\) and \((\mathcal{J}_{2-\nu} g_z^n)(0) = 0\). Therefore by (1.2) we get
\[
\int_0^s |\mathcal{J}_{2-\nu} g_z^n(t)| \, |D^\nu g_z(t)| \, dt \leq \frac{s}{2} \int_0^s (D^\nu g_z(t))^2 \, dt, \quad \forall s \in [0, 1].
\] (2.24)

We have established the following Opial type result.

Theorem 2.1. Let \(Q\) be a compact and convex subset of \(\mathbb{R}^N, N \geq 2\); \(z, x_0 \in Q\) be fixed; \(1 \leq \nu < 2\). Let \(f \in C^1(Q)\). Assume that as a function of \(t : f_{x_i}(x_0 + t(z - x_0)) \in C^{\nu-1}([0, 1]), \, i = 1, \ldots, N\).

Then
\[
\frac{1}{\Gamma(2-\nu)} \int_0^s \left| \sum_{i=1}^N (z_i - x_{0i}) \left(\int_0^t (t-s)^{1-\nu} f_{x_i}(x_0 + s(z-x_0)) \, ds \right) \right|
\]
\[
\sum_{i=1}^N (z_i - x_{0i})(f_{x_i}(x_0 + t(z-x_0)))^{(\nu-1)} \, dt
\]
\[
\leq \frac{s}{2} \int_0^s \left(\sum_{i=1}^N (z_i - x_{0i})(f_{x_i}(x_0 + t(z-x_0)))^{(\nu-1)} \right)^2 \, dt,
\] (2.25)
\(
\forall s \in [0, 1].
\)

Remark 2.2. (Continuation) Let here \(\nu \geq 2\) and \(n := [\nu], \, \beta := \nu - n\). We assume that as functions of \(t : f_{\alpha}(x_0 + t(z - x_0)) \in C^{(\nu-n)}([0, 1]), \) for all \(\alpha := (\alpha_1, \ldots, \alpha_k), \alpha_i \in \mathbb{Z}^+, \, i = 1, \ldots, N; \, |\alpha| := \sum_{i=1}^N \alpha_i = n\). Clearly then there exists \(g_z^{(n)} = (\mathcal{J}_{1-\beta} g_z^n)^{\nu}\), and it holds
\[
g_z^{(n)}(t) = \left[\left(\sum_{i=1}^N (z_i - x_{0i}) \frac{\partial}{\partial x_i} \right)^n f \right]^{(\nu-n)} (x_0 + t(z-x_0)),
\] (2.26)
all \(t \in [0, 1]\).

Of course, it holds
\[
(\mathcal{J}_{1-\beta} g_z^n(t))^2 \equiv \frac{1}{\Gamma(1-\beta)} \int_0^t (t-s)^{-\beta}
\]
\[
\left\{ \left[\left(\sum_{i=1}^N (z_i - x_{0i}) \frac{\partial}{\partial x_i} \right)^n f \right] (x_0 + s(z-x_0)) \right\} \, ds.
\] (2.27)

Notice \((\mathcal{J}_{1-\beta} g_z^n(0)) = 0\). Hence again by (1.2) we get
\[
\int_0^s |\mathcal{J}_{1-\beta} g_z^n(t)| \, |D^\nu g_z(t)| \, dt \leq \frac{s}{2} \int_0^s (D^\nu g_z(t))^2 \, dt, \quad \forall s \in [0, 1].
\] (2.28)

We have proved the following general Opial type of result.

Theorem 2.2. Let \(Q\) be a compact and convex subset of \(\mathbb{R}^N, N \geq 2\); \(z, x_0 \in Q\) be fixed; \(\nu \geq 2, \, n := [\nu], \, \beta := \nu - n\). Let \(f \in C^n(Q)\). Assume that as a function
of \(t : f_\alpha(x_0 + t(z - x_0)) \in C^{(\nu-n)}([0,1]), \) for all \(\alpha := (\alpha_1, \ldots, \alpha_k), \alpha_i \in \mathbb{Z}^+, i = 1, \ldots, N; \) \(|\alpha| := \sum_{i=1}^{N} \alpha_i = n. \) Then

\[
\frac{1}{\Gamma(1-\beta)} \int_0^s \left| \int_0^t (t-s)^{-\beta} \left\{ \left[\left(\sum_{i=1}^{N} (z_i - x_{0i}) \frac{\partial}{\partial x_i} \right)^n f \right](x_0 + s(z - x_0)) \right\} ds \right| \left[\left(\sum_{i=1}^{N} (z_i - x_{0i}) \frac{\partial}{\partial x_i} \right)^n f \right](x_0 + t(z - x_0)) \right| \right. dt \\
\leq \frac{s}{2} \int_0^s \left\{ \left[\left(\sum_{i=1}^{N} (z_i - x_{0i}) \frac{\partial}{\partial x_i} \right)^n f \right](x_0 + t(z - x_0)) \right\}^2 dt,
\]

\forall s \in [0, 1].

Note. Following the last pattern one can transfer any univariate Opial type inequality (see Agarwal and Pang [1]), into this fractional multivariate general setting. Since no chain rule is valid in the fractional differentiation, inequalities such as (2.28), (2.29) are not revealing themselves, to totally decompose into all of their ingredients. Next, working over *spherical shells* we obtain a series of various Opial type fractional multivariate inequalities that look nice and are very clear.

We give

Definition 2.1. (see Anastassiou [7] and Anastassiou [5], p. 540) In the following we carry earlier notions introduced in Remark 2.1, over to arbitrary \([a,b] \subseteq \mathbb{R}. \) Let \(x, x_0 \in [a,b] \) such that \(x \geq x_0, x_0 \) is fixed. Let \(f \in C([a,b]) \) and define

\[
(\mathcal{J}_\nu^x f)(x) := \frac{1}{\Gamma(\nu)} \int_0^x (x-t)^{\nu-1} f(t) dt, \quad x_0 \leq x \leq b,
\]

the generalized Riemann-Liouville integral. We consider the subspace \(C_\nu^{x_0}([a,b]) \) of \(C^{\nu}([a,b]):\)

\[
C_\nu^{x_0}([a,b]) := \{ f \in C^{\nu}([a,b]) : \mathcal{J}_1 f = x_0 \}
\]

Hence, let \(f \in C_\nu^{x_0}([a,b]), \) we define the generalized \(\nu \)-fractional derivative of \(f \) over \([x_0,b] \) as

\[
D_\nu^{x_0} f := (\mathcal{J}_1 f^{(n)})'.
\]

Notice that

\[
(\mathcal{J}_1 f^{(n)})'(x) = \frac{1}{\Gamma(1-\alpha)} \int_{x_0}^{x} (x-t)^{-\alpha} f^{(n)}(t) dt
\]

exists for \(f \in C_\nu^{x_0}([a,b]). \)

Next we use

Theorem 2.3. (see Anastassiou [8] and Anastassiou [5], p. 567) Let \(\gamma_i \geq 1, \nu \geq 2 \) such that \(\nu - \gamma_i \geq 1; \ i = 1, \ldots, l \) and \(f \in C_\nu^{x_0}([a,b]) \) with \(f^{(j)}(x_0) = 0, j = 0, 1, \ldots, n-1, n := [\nu]. \) Here \(x, x_0 \in [a,b] : x \geq x_0. \) Let \(q_1, q_2 > 0 \) continuous
Lemma 2.1. Let $r_i > 0 : \sum_{i=1}^l r_i = r$. Let $s_1, s'_1 > 1 : \frac{1}{s_1} + \frac{1}{s'_1} = 1$ and $s_2, s'_2 > 1 : \frac{1}{s_2} + \frac{1}{s'_2} = 1$ and $p > s_2$. Furthermore suppose that

$$Q_1 := \left(\int_{x_0}^x (q_1(\omega))^{s'_1} d\omega \right)^{1/s'_1} < +\infty$$ \hspace{1cm} (2.34)

and

$$Q_2 := \left(\int_{x_0}^x (q_2(\omega))^{-s_2/p} d\omega \right)^{r/s'_2} < +\infty.$$ \hspace{1cm} (2.35)

Call $\sigma := \frac{p-s_2}{ps_2}$. Then it holds

$$\int_{x_0}^x q_1(\omega) \prod_{i=1}^l (|D_{x_0}^{\gamma_i}(f)(\omega)|^r d\omega \leq Q_1 Q_2$$

and

$$\prod_{i=1}^l \left\{ \frac{\sigma^{r_i} \sigma}{(\Gamma(\nu - \gamma_i))^{r_i} (\nu - \gamma_i - 1 + \sigma)^{r_i} \sigma} \right\} \cdot \frac{(x-x_0)^{\sum_{i=1}^l (\nu - \gamma_i - 1) r_i + \sigma r + \frac{1}{s_1}}}{((\sum_{i=1}^l (\nu - \gamma_i - 1) r_i + r s_1 + 1)^{1/s_1}} \cdot \left(\int_{x_0}^x q_2(\omega) |D_{x_0}^{\nu}(f)(\omega)|^p d\omega \right)^{r/p}.$$ \hspace{1cm} (2.36)

We next work in the setting of spherical shells introduced in the Introduction.

We need

Definition 2.2. Let $\nu > 0$, $n := [\nu]$, $\alpha := \nu - n$, $f \in C^n(\bar{A})$, A is a spherical shell. Assume that there exists $\frac{\partial_{R_1}^\alpha f(x)}{\partial r^\alpha} \in C(\bar{A})$, given by

$$\frac{\partial_{R_1}^\alpha f(x)}{\partial r^\alpha} := \frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial r} \left(\int_{R_1}^r (r-t)^{-\alpha} \partial^{\nu}(f(t\omega)) d\omega \right),$$ \hspace{1cm} (2.37)

where $x \in \bar{A}$, i.e. $x = r \omega$, $r \in [R_1, R_2]$, $\omega \in S^{N-1}$.

We call $\frac{\partial_{R_1}^\alpha f}{\partial r^\alpha}$ the radial fractional derivative of f of order ν.

We need

Lemma 2.1. Let $\gamma \geq 1$, $\nu > 2$ such that $\nu - \gamma \geq 1$. Let $f \in C^n(\bar{A})$ and there exists $\frac{\partial_{R_1}^\gamma f(x)}{\partial r^\gamma} \in C(\bar{A})$, $x \in \bar{A}$, A a spherical shell. Further assume that $\frac{\partial^j f(R_1 \omega)}{\partial r^j} = 0$, $j = 0, 1, \ldots, n-1$, $n := [\nu]$, $\forall \omega \in S^{N-1}$. Then there exists $\frac{\partial_{R_1}^\beta f(x)}{\partial r^\beta} \in C(\bar{A})$.

Proof. The assumption implies that $\frac{\partial_{R_1}^\beta f(r\omega)}{\partial r^\beta} \in C([R_1, R_2]), \forall \omega \in S^{N-1}$, i.e. $f(r\omega) \in C_{R_1}^\nu([R_1, R_2])$, $\forall \omega \in S^{N-1}$. Following Anastassiou [7], and Anastassiou [5], pp. 544-545, we get that there exists $\frac{\partial_{R_1}^\gamma f(r\omega)}{\partial r^\gamma}$ and is given by

$$\frac{\partial_{R_1}^\gamma f(r\omega)}{\partial r^\gamma} = \frac{1}{\Gamma(\nu - \gamma)} \int_{R_1}^r (r-t)^{\nu-\gamma-1} \frac{\partial^\nu f(t\omega)}{\partial r^\nu} dt, \hspace{1cm} (2.38)$$

where $x \in \bar{A}$, i.e. $x = r \omega$, $r \in [R_1, R_2]$, $\omega \in S^{N-1}$.
indeed \(f(r \omega) \in C_{R_1}^\nu([R_1, R_2]), \forall \omega \in S^{N-1}. \)

Hence
\[
\frac{\partial_{R_1}^\nu f(r \omega)}{\partial r^{\nu - 1}} = \frac{1}{\Gamma(\nu - \gamma)} \int_{R_1}^{R_2} \mathcal{X}_{[R_1, r]}(t)(r - t)^{\nu - \gamma - 1} \frac{\partial_{R_1}^\nu f(t \omega)}{\partial r^{\nu - 1}} \, dt. \tag{2.39}
\]

Let \(r_n \to r, \omega_n \to \omega, \) then \(\mathcal{X}_{[R_1, r_n]}(t) \to \mathcal{X}_{[R_1, r]}(t), \) a.e. also \((r_n - t)^{\nu - \gamma - 1} \to (r - t)^{\nu - \gamma - 1}, \) and
\[
\frac{\partial_{R_1}^\nu f(t \omega_n)}{\partial r^{\nu - 1}} \to \frac{\partial_{R_1}^\nu f(t \omega)}{\partial r^{\nu - 1}}.
\]

Furthermore it holds that
\[
\mathcal{X}_{[R_1, r_n]}(t)(r_n - t)^{\nu - \gamma - 1} \frac{\partial_{R_1}^\nu f(t \omega_n)}{\partial r^{\nu - 1}} \to \\
\mathcal{X}_{[R_1, r]}(t)(r - t)^{\nu - \gamma - 1} \frac{\partial_{R_1}^\nu f(t \omega)}{\partial r^{\nu - 1}}, \text{ a.e. on } [R_1, R_2]. \tag{2.40}
\]

However we have
\[
\mathcal{X}_{[R_1, r_n]}(t)(r_n - t)^{\nu - \gamma - 1} \left| \frac{\partial_{R_1}^\nu f(t \omega_n)}{\partial r^{\nu - 1}} \right| \\
\leq (R_2 - R_1)^{\nu - \gamma - 1} \left\| \frac{\partial_{R_1}^\nu f}{\partial r^{\nu - 1}} \right\|_\infty < \infty. \tag{2.41}
\]

Thus, by the Dominated convergence theorem we obtain
\[
\int_{R_1}^{R_2} \mathcal{X}_{[R_1, r_n]}(t)(r_n - t)^{\nu - \gamma - 1} \frac{\partial_{R_1}^\nu f(t \omega_n)}{\partial r^{\nu - 1}} \, dt \to \\
\int_{R_1}^{R_2} \mathcal{X}_{[R_1, r]}(t)(r - t)^{\nu - \gamma - 1} \frac{\partial_{R_1}^\nu f(t \omega)}{\partial r^{\nu - 1}} \, dt, \tag{2.42}
\]
proving the claim.

We present the very general result.

Theorem 2.4. Let \(\gamma_i \geq 1, \nu \geq 2, \) such that \(\nu - \gamma_i \geq 1; i = 1, \ldots, l, n := [\nu]. \) Let \(f \in C^n(A) \) and there exists \(\frac{\partial f}{\partial x^j}(x) \in C(A), x \in A, A \) is a spherical shell: \(A := B(0, R_2) - B(0, R_1) \subseteq \mathbb{R}^N, \) \(N \geq 2. \) Furthermore assume that \(\frac{\partial f}{\partial x^j}, j = 0, 1, \ldots, n - 1, \) vanish on \(\partial B(0, R_1). \) Let \(r_i > 0 : \sum_{i=1}^l r_i = p. \) Let \(s_1, s'_1 > 1 : \frac{1}{s_1} + \frac{1}{s'_1} = 1, \) and \(s_2, s'_2 > 1 : \frac{1}{s_2} + \frac{1}{s'_2} = 1, \) and \(p > s_2. \) Denote
\[
Q_1 = \left(\frac{R_2^{(N-1)s'_1+1} - R_1^{(N-1)s'_1+1}}{(N - 1)s'_1 + 1} \right)^{1/s'_1}, \tag{2.43}
\]
and
\[
Q_2 = \left(\frac{R_2^{(1-N)s'_2+1} - R_1^{(1-N)s'_2+1}}{(1 - N)s'_2 + 1} \right)^{p/s'_2}. \tag{2.44}
\]

Call \(\sigma := \frac{\nu - s_2}{p s_2}. \)
Also call

\[C := Q_1 Q_2 \prod_{i=1}^{l} \frac{\sigma^{\rho_i}}{(\Gamma(\nu - \gamma_i))^{r_i}(\nu - \gamma_i - 1 + \sigma)^{r_i}} \]

\[\frac{(R_2 - R_1)^{\sum_{i=1}^{l}(\nu - \gamma_i - r_i) + \frac{1}{s_2} - 1}}{(\sum_{i=1}^{l}(\nu - \gamma_i - 1)r_is_i) + s_1(\frac{p}{s_2} - 1) + 1} \]

Then

\[\int_{A} \prod_{i=1}^{l} \left| \frac{\partial^\rho_i f(x)}{\partial^{r_i} x} \right|^{\sigma_i} \, dx \leq C \int_{A} \left| \frac{\partial^\nu f(x)}{\partial^{\nu} x} \right|^{p} \, dx. \tag{2.46} \]

Proof. The assumption imply that \(f(\omega) \in C^n([R_1, R_2]), \) \(\frac{\partial^\nu f(\omega)}{\partial^{\nu} \omega} \in C([R_1, R_2]), \) \(\forall \omega \in S^{n-1}. \) By Theorem 2.3 we have

\[\int_{R_1}^{R_2} \int_{R_1}^{R_2} \prod_{i=1}^{l} \left| \frac{\partial^\nu_i f(\omega)}{\partial^{r_i} \omega} \right|^{\sigma_i} \, d\omega \]

\[\leq C \int_{R_1}^{R_2} \int_{R_1}^{R_2} \prod_{i=1}^{l} \left| \frac{\partial^\nu_i f(\omega)}{\partial^{r_i} \omega} \right|^{\sigma_i} \, d\omega. \tag{2.47} \]

Therefore it holds

\[\int_{S^{n-1}} \left(\int_{R_1}^{R_2} \int_{R_1}^{R_2} \prod_{i=1}^{l} \left| \frac{\partial^\nu_i f(\omega)}{\partial^{r_i} \omega} \right|^{\sigma_i} \, d\omega \right) \, d\omega \]

\[\leq C \int_{S^{n-1}} \left(\int_{R_1}^{R_2} \int_{R_1}^{R_2} \prod_{i=1}^{l} \left| \frac{\partial^\nu_i f(\omega)}{\partial^{r_i} \omega} \right|^{\sigma_i} \, d\omega \right) \, d\omega. \tag{2.48} \]

Using Lemma 2.1 and by (1.3) we derive (2.46). \(\square \)

We mention

Theorem 2.5. (see Anastassiou [8] and Anastassiou [5], p. 573) Let \(\gamma_i \geq 1, \nu \geq 2 \) such that \(\nu - \gamma_i \geq 1; \, i = 1, \ldots, l \) and \(f \in C^\nu_{x_0}([a, b]) \) with \(f^{(j)}(x_0) = 0, \, j = 0, 1, \ldots, n-1, \, n := [\nu]. \) Here \(x, x_0 \in [a, b] : x \geq x_0. \) Let \(\bar{q}(w) \geq 0 \) continuous on \([a, b] \) and \(r_i > 0 : \sum_{i=1}^{l} r_i = r. \) Then it holds

\[\int_{x_0}^{x} \bar{q}(w) \prod_{i=1}^{l} (|D^\nu_{x_0} f(w)|)^{r_i} \, dw \]

\[\leq \left\{ \frac{\bar{q} \infty(|D^\nu_{x_0} f| \infty)^{r}}{\prod_{i=1}^{l} (\Gamma(\nu - \gamma_i + 1))^{r_i}} \right\} \cdot \left\{ \frac{(x - x_0)^{r - \sum_{i=1}^{l} r_i \gamma_i + 1}}{(r - \sum_{i=1}^{l} r_i \gamma_i + 1)} \right\}. \tag{2.49} \]

We give

Theorem 2.6. Let \(\gamma_i \geq 1, \nu \geq 2, \) such that \(\nu - \gamma_i \geq 1; \, i = 1, \ldots, l, \, n := [\nu]. \) Let \(f \in C^\nu(A) \) and there exists \(\frac{\partial^\nu_i f(x)}{\partial^{r_i} x} \in C(A), \, x \in A, \, A \) is a spherical shell: \(A := \)
\(B(0, R) - B(0, R_1) \subseteq \mathbb{R}^N \), \(N \geq 2 \). Furthermore assume that \(\frac{\partial f}{\partial r^j} \), \(j = 0, 1, \ldots, n-1 \), vanish on \(\partial B(0, R_1) \). Let \(r_i > 0 : \sum_{i=1}^l r_i = r \). Call
\[
M := \frac{R_2^{N-1}(R_2 - R_1)^{\nu - \sum_{i=1}^l r_i \gamma_i + 1}}{\prod_{i=1}^l (\Gamma(\nu - \gamma_i + 1))^{r_i}(\nu - \sum_{i=1}^l r_i \gamma_i + 1)} > 0. \tag{2.50}
\]
Then
\[
\int_A \left(\prod_{i=1}^l \left| \frac{\partial R_i f(x)}{\partial r^{\gamma_i}} \right|^{r_i} \right) dx \leq M \frac{2\pi^{N/2}}{\Gamma(N/2)} \left\| \frac{\partial R_i f}{\partial r^\nu} \right\|_{\infty, A}. \tag{2.51}
\]

Proof. By Theorem 2.5 we get that
\[
\int_{R_1}^{R_2} r^{N-1} \left(\prod_{i=1}^l \left| \frac{\partial R_i f(r \omega)}{\partial r^{\gamma_i}} \right|^{r_i} \right) dr \leq M \left\| \frac{\partial R_i f}{\partial r^\nu} \right\|_{\infty, A}. \tag{2.52}
\]
Hence it holds
\[
\int_{S^{N-1}} \left(\int_{R_1}^{R_2} r^{N-1} \left(\prod_{i=1}^l \left| \frac{\partial R_i f(r \omega)}{\partial r^{\gamma_i}} \right|^{r_i} \right) dr \right) d\omega \leq M \left(\omega_N \left\| \frac{\partial R_i f}{\partial r^\nu} \right\|_{\infty, A}. \tag{2.53}
\]
Using (1.3) and Lemma 2.1, we establish the claim. \(\Box \)

We need

Theorem 2.7 (Anastassiou and Goldstein [9]). Let \(\gamma \geq 1 \), \(\nu \geq 2 \), \(\nu - \gamma \geq 1 \), \(\alpha, \beta > 0 \), \(r > \alpha \), \(r > 1 \); let \(p > 0 \), \(q > 0 \) be continuous functions on \([a, b] \). Let \(f \in C_{x_0}^\nu([a,b]) \) with \(f^{(i)}(x_0) = 0 \), \(i = 0, 1, \ldots, n-1 \), \(n := [\nu] \). Let \(x, x_0 \in [a,b] \) with \(x \geq x_0 \). Then
\[
\int_{x_0}^{x} q(w) |D_x^\gamma f(w)|^\beta |D_x^\nu f(w)|^\alpha dw \leq K(p, q, \gamma, \nu, \alpha, \beta, r, x, x_0)
\]
\[
\cdot \left(\int_{x_0}^{x} p(w) |D_x^\nu f(w)|^r dw \right)^{(\alpha + \beta - \frac{\alpha r}{\nu})}. \tag{2.54}
\]
Here
\[
K(p, q, \gamma, \nu, \alpha, \beta, r, x, x_0) := \left(\frac{\alpha}{\alpha + \beta} \right)^{\alpha/r} \cdot \frac{1}{(\Gamma(\nu - \gamma))^{\beta}}
\]
\[
\cdot \left(\int_{x_0}^{x} (q(w))^{\frac{\gamma}{r - \alpha}} \cdot (p(w))^{-\alpha} \cdot (P_1(w))^{\frac{\beta (r-1)}{r-\alpha}} \cdot dw \right)^{-\frac{1}{r-\alpha}}, \tag{2.55}
\]
with
\[
P_1(w) := \int_{x_0}^{w} (p(t))^{-\frac{1}{\alpha - \nu - 1}} \cdot (w - t)^{(-\gamma - 1)(\frac{r-1}{r-\alpha})} dt. \tag{2.56}
\]

We present

Theorem 2.8. Let \(\gamma \geq 1 \), \(\nu \geq 2 \), \(n := [\nu] \), \(\nu - \gamma \geq 1 \), \(\alpha, \beta > 0 \), \(\alpha + \beta > 1 \). Let \(f \in C^\alpha(\bar{A}) \) and there exists \(\frac{\partial R_i f}{\partial r^\nu} \in C(\bar{A}) \), \(x \in \bar{A} \), \(A \) is a spherical shell:
$$A := B(0, R_2) - B(0, R_1) \subseteq \mathbb{R}^N, \; N \geq 2. \; \text{Furthermore assume that } \frac{\partial^2 f}{\partial r^\beta} = 0, \; \text{for } j = 0, 1, \ldots, n - 1, \; \text{on } \partial B(0, R_1). \; \text{Then}$$

$$\int_A \left| \frac{\partial^\gamma f(x)}{\partial r^\gamma} \right|^\beta \left| \frac{\partial^\nu f(x)}{\partial r^\nu} \right|^{\alpha} dx \leq K \int_A \left| \frac{\partial^\gamma f(x)}{\partial r^\gamma} \right|^{\alpha+\beta} dx. \tag{2.57}$$

Here

$$= \left(\frac{\alpha}{\alpha + \beta} \right)^{\alpha/(\alpha+\beta)} \frac{1}{(\Gamma(\nu - \gamma))^\beta} \int_{R_1}^{R_2} r^{N-1} \left((P_1(r))^{(\alpha+\beta-1)} dr \right)^{\frac{\beta}{\alpha+\beta}}, \tag{2.58}$$

with

$$P_1(r) := \int_{R_1}^{r} t^{1-N-\beta} (r-t)^{(\nu-\gamma-1)\frac{\beta}{\alpha+\beta}} dr. \tag{2.59}$$

Proof. The assumption imply that $f(r\omega) \in C^\alpha([R_1, R_2])$ and $\frac{\partial^\nu f(r\omega)}{\partial r^\nu} \in C([R_1, R_2])$, $\forall \omega \in S^{N-1}$. Hence by Theorem 2.7, $\forall \omega \in S^{N-1}$ we get that

$$\int_{R_1}^{R_2} r^{N-1} \left| \frac{\partial^\gamma f(r\omega)}{\partial r^\gamma} \right|^\beta \left| \frac{\partial^\nu f(r\omega)}{\partial r^\nu} \right|^{\alpha} dr$$

$$\leq K \int_{R_1}^{R_2} r^{N-1} \left| \frac{\partial^\nu f(r\omega)}{\partial r^\nu} \right|^{\alpha+\beta} dr. \tag{2.60}$$

Therefore it holds

$$\int_{S^{N-1}} \left(\int_{R_1}^{R_2} r^{N-1} \left| \frac{\partial^\gamma f(r\omega)}{\partial r^\gamma} \right|^\beta \left| \frac{\partial^\nu f(r\omega)}{\partial r^\nu} \right|^{\alpha} dr \right) d\omega$$

$$= K \left(\int_{S^{N-1}} \left(\int_{R_1}^{R_2} r^{N-1} \left| \frac{\partial^\nu f(r\omega)}{\partial r^\nu} \right|^{\alpha+\beta} dr \right) d\omega \right). \tag{2.61}$$

Using Lemma 2.1 and by (1.3) we derive (2.57).

We need

Theorem 2.9. (see Anastassiou and Goldstein [9]) Let $\nu \geq 2, \; \alpha, \beta > 0, \; r > \alpha, \; r > 1; \; p > 0, \; q \geq 0$ be continuous functions on $[a, b]$. Let $f \in C^\nu_{x_0}([a, b])$ with $f^{(i)}(x_0) = 0, \; i = 0, 1, \ldots, n - 1, \; n := [\nu]$. Let $x, x_0 \in [a, b]$ with $x \geq x_0$. Then

$$\int_{x_0}^{x} g(w) |f(w)|^\beta |D_x^\nu f(x)|^\alpha dw \leq K^*(p, q, \nu, \alpha, \beta, r, x, x_0)$$

$$\cdot \left(\int_{x_0}^{x} p(w) |D_x^\nu f(w)|^r dw \right)^{\frac{\alpha+\beta}{\alpha}}. \tag{2.62}$$

Here

$$K^*(p, q, \nu, \alpha, \beta, r, x, x_0) := \left(\frac{\alpha}{\alpha + \beta} \right)^{\alpha/r} \cdot \frac{1}{(\Gamma(\nu))^\beta} \cdot \left(\int_{x_0}^{x} \left((q(w))^r \cdot (p(w))^{-\alpha} \right)^{\frac{1}{r-\alpha}} \cdot (P_1^*(w))^{\frac{\beta(r-1)}{r-\alpha}} \cdot dw \right)^{\frac{\alpha+\beta}{\alpha}}, \tag{2.63}$$
with
\[P_1^*(w) := \int_{x_0}^{w} (p(t))^{\frac{1}{p-1}} \cdot (w - t)^{\frac{1}{p-1}} (\nu - (\nu - 1)p/2) - (\nu - 1) - (p-1)/2) dt. \] (2.64)

Based on Theorem 2.9 we give similarly:

Theorem 2.10. Let \(\nu \geq 2, \ n := [\nu], \ \alpha, \beta > 0, \ \alpha + \beta > 1. \) Let \(f \in C^n(A) \) and there exists \(\frac{\partial f(x)}{\partial \nu} \in C(A), \ x \in A, \ A \) is a spherical shell: \(A := B(0, R_2) - B(0, R_1) \subseteq \mathbb{R}^N, \ N \geq 2. \) Furthermore assume that \(\frac{\partial f}{\partial \nu} = 0, \ for j = 0, 1, \ldots, n - 1, \ on \ \partial B(0, R_1). \) Then
\[\int_A |f(x)|^\beta \left| \frac{\partial R_1 f(x)}{\partial \nu} \right|^\alpha dx \leq K^* \int_A \left| \frac{\partial R_1 f(x)}{\partial \nu} \right|^{\alpha + \beta} dx. \] (2.65)

Here
\[K^* := \left(\frac{\alpha}{\alpha + \beta} \right) \left(\frac{2}{\alpha + \beta} \right) \left(\frac{1}{\Gamma(\nu)} \right)^\beta \left(\int_{R_1}^{R_2} r^{N-1} (P_1^*(r))^{(\alpha + \beta - 1)} dr \right)^\frac{\beta}{\alpha + \beta} , \] (2.66)

with
\[P_1^*(r) := \int_{R_1}^{r} \left(\frac{2}{\alpha + \beta} \right) (r - t)^{(\alpha - 1)} dt. \] (2.67)

Next we present a set of multivariate fractional Opial type inequalities involving two functions over the shell.

We need

Theorem 2.11. (see Anastassiou [4]) Let \(\nu, \gamma_1, \gamma_2 \geq 1, \ such that \ \nu - 1 \geq 1, \ \nu - \gamma_2 \geq 1 \) and \(f_1, f_2 \in C^\nu([a, b]) \) with
\[f_1^{(i)}(x_0) = f_2^{(i)}(x_0) = 0, \ i = 0, 1, \ldots, n - 1, \ n := [\nu]. \] (2.68)

Here, \(x, x_0 \in [a, b] : x \geq x_0. \) Consider also \(p(t) > 0, \) and \(q(t) \geq 0 \) continuous functions on \([x_0, b]. \)

Let \(\lambda_\nu > 0 \) and \(\lambda_\alpha, \lambda_\beta \geq 0, \ such that \ \lambda_\nu < p, \ where \ p > 1. \) Set
\[P_k(w) := \int_{x_0}^{w} (w - t)^{(\nu - 1)(\nu - 1)p/2} dt, \]
\[k = 1, 2, \ x_0 \leq w \leq b, \] (2.69)
\[A(w) := \frac{q(w) \cdot (P_1(w))^\lambda_\alpha \cdot (P_2(w))^\lambda_\beta}{(\Gamma(\nu - 1))^\lambda_\alpha \cdot (\Gamma(\nu - 2))^\lambda_\beta}, \] (2.70)
\[A_0(x) := \left(\int_{x_0}^{x} A(w)^{p/2} dw \right)^{(p-\lambda_\nu)/p}, \] (2.71)

and
\[\delta_1 := \begin{cases} 2^{1-(\lambda_\alpha + \lambda_\nu)/p}, & \text{if } \lambda_\alpha + \lambda_\nu \leq p, \\ 1, & \text{if } \lambda_\alpha + \lambda_\nu \geq p. \end{cases} \] (2.72)
If $\lambda_\beta = 0$, we obtain that,
\[
\int_{x_0}^{x} q(w) \left[\left| (D_{x_0}^{\gamma_1} f_1)(w) \right|^{\lambda_\alpha} \cdot \left| (D_{x_0}^{\nu} f_1)(w) \right|^{\lambda_\nu} + \left| (D_{x_0}^{\gamma_2} f_1)(w) \right|^{\lambda_\alpha} \cdot \left| (D_{x_0}^{\nu} f_1)(w) \right|^{\lambda_\nu} \right] \, dw
\leq (A_0(x) \mid_{\lambda_\beta = 0}) \cdot \left(\frac{\lambda_\nu}{\lambda_\alpha + \lambda_\nu} \right)^{\lambda_\nu/p} \cdot \delta_1 \cdot \int_{x_0}^{x} p(w) \left[\left| (D_{x_0}^{\nu} f_1)(w) \right|^p + \left| (D_{x_0}^{\nu} f_2)(w) \right|^p \right] \, dw \right]^{(\lambda_\alpha + \lambda_\nu)/p}.
\] (2.73)

Similarly, by (2.73), we derive

Theorem 2.12. Let $\nu, \gamma_1, \gamma_2 \geq 1$, such that $\nu - \gamma_1 \geq 1$, $\nu - \gamma_2 \geq 1$, $n := [\nu]$ and $f_1, f_2 \in C^n(A)$ and there exist $\frac{\partial R_1 f_1(x)}{\partial r^\nu}, \frac{\partial R_1 f_2(x)}{\partial r^\nu} \in C(A)$, $A := B(0, R_2) - B(0, R_1) \subseteq \mathbb{R}^N$, $N \geq 2$. Furthermore assume $\frac{\partial R_1 f_i}{\partial r_j} = \frac{\partial R_2 f_i}{\partial r_j} = 0$, for $j = 0, 1, \ldots, n - 1$, on $\partial B(0, R_1)$.

Let $\lambda_\nu > 0$ and $\lambda_\alpha > 0$; $\lambda_\beta \geq 0$, $p := \lambda_\alpha + \lambda_\nu > 1$. Set
\[
P_k(w) := \int_{R_1}^{w} (w - t)^{(\nu - \gamma_1 - 1)p/(p - 1)} t^{\left(\frac{\nu - \gamma_1}{p - 1}\right)} \, dt,
\] (2.74) $k = 1, 2$, $R_1 \leq w \leq R_2$,
\[
A(w) := \frac{w^{(N-1)(1-\frac{1}{p})} (P_1(w))^{\lambda_\alpha} (P_2(w))^{\lambda_\beta}}{(\Gamma(\nu - \gamma_1))^{\lambda_\alpha} (\Gamma(\nu - \gamma_2))^{\lambda_\beta}},
\] (2.75)
\[
A_0(R_2) := \left(\int_{R_1}^{R_2} (A(w))^{\frac{1}{\lambda_\alpha}} \, dw \right)^{\frac{1}{\lambda_\beta}}.
\] (2.76)

Take the case of $\lambda_\beta = 0$. Then
\[
\int_A \left[\left| \frac{\partial R_1 f_1(x)}{\partial r^\nu}(x) \right|^{\lambda_\nu} \cdot \left| \frac{\partial R_1 f_2(x)}{\partial r^\nu}(x) \right|^{\lambda_\nu} \right] \, dx
\leq (A_0(R_2)|_{\lambda_\beta = 0}) \left(\frac{\lambda_\nu}{p} \right)^{\lambda_\nu/p} \int_A \left[\left| \frac{\partial R_1 f_1(x)}{\partial r^\nu}(x) \right|^p + \left| \frac{\partial R_1 f_2(x)}{\partial r^\nu}(x) \right|^p \right] \, dx.
\] (2.77)

We need

Theorem 2.13. (see Anastassiou [4]) All here, as in Theorem 2.11. Denote
\[
\delta_3 := \begin{cases}
2^{\lambda_3/\lambda_\nu} - 1, & \text{if } \lambda_\beta \geq \lambda_\nu, \\
1, & \text{if } \lambda_\beta \leq \lambda_\nu.
\end{cases}
\]
If \(\lambda_{\alpha} = 0 \), then, it holds
\[
\int_{x_0}^{x} q(w) \left[\left((D_{x_0}^{\gamma_2} f_2)(w) \right)^{\lambda_{\beta}} \cdot \left((D_{x_0}^{\nu} f_1)(w) \right)^{\lambda_{\nu}}
+ \left((D_{x_0}^{\gamma_2} f_1)(w) \right)^{\lambda_{\beta}} \cdot \left((D_{x_0}^{\nu} f_2)(w) \right)^{\lambda_{\nu}} \right] dw
\]
\[
\leq (A_0(x)|_{\lambda_{\alpha}=0}) 2^{p-\lambda_{\nu}/p} \left(\frac{\lambda_{\nu}}{\lambda_{\beta} + \lambda_{\nu}} \right)^{\lambda_{\nu}/p} \delta_{3}^{\lambda_{\nu}/p}.
\]

All \(x_0 \leq x \leq b \).

Similarly, by (2.78), we derive

Theorem 2.14. All basic assumptions as in Theorem 2.12. Let \(\lambda_{\nu} > 0, \lambda_{\alpha} = 0, \lambda_{\beta} > 0, p := \lambda_{\nu} + \lambda_{\beta} > 1, P_2 \) defined by (2.74). Now it is
\[
A(w) := \frac{w^{(N-1)(1-\frac{\lambda_{\nu}}{\nu})} (P_2(w))^{\lambda_{\beta}(\frac{\nu-1}{\nu})}}{(\Gamma(\nu-\gamma_2))^{\lambda_{\beta}}},
\]
\[
A_0(R_2) := \left(\int_{R_1}^{R_2} (A(w))^{\frac{\nu}{\lambda_{\nu}}} dw \right)^{\lambda_{\beta}/p}.
\]

Denote
\[
\delta_{3} := \begin{cases}
2^{\lambda_{\beta}/\lambda_{\nu}} - 1, & \text{if } \lambda_{\beta} \geq \lambda_{\nu}, \\
1, & \text{if } \lambda_{\beta} \leq \lambda_{\nu}.
\end{cases}
\]

Then
\[
\int_{A} \left[\left(\frac{\partial_{R_1}^{\gamma_2} f_2(x)}{\partial r^{\gamma_2}} \right)^{\lambda_{\beta}} \left(\frac{\partial_{R_1}^{\nu} f_1(x)}{\partial r^{\nu}} \right)^{\lambda_{\nu}} + \left(\frac{\partial_{R_1}^{\gamma_2} f_1(x)}{\partial r^{\gamma_2}} \right)^{\lambda_{\beta}} \left(\frac{\partial_{R_1}^{\nu} f_2(x)}{\partial r^{\nu}} \right)^{\lambda_{\nu}} \right] dx
\]
\[
\leq A_0(R_2) 2^{\lambda_{\beta}/p} \left(\frac{\lambda_{\nu}}{p} \right)^{(\lambda_{\nu}/p)} \delta_{3}^{\lambda_{\nu}/p} \int_{A} \left(\left| \frac{\partial_{R_1}^{\nu} f_1(x)}{\partial r^{\nu}} \right|^{p} + \left| \frac{\partial_{R_1}^{\gamma_2} f_2(x)}{\partial r^{\nu}} \right|^{p} \right) dx.
\]

We need

Theorem 2.15. (see Anastassiou [4]) All here, as in Theorem 2.11 (\(\lambda_{\alpha}, \lambda_{\beta} \neq 0 \)).

Denote
\[
\tilde{\gamma}_1 := \begin{cases}
2^{(\lambda_{\alpha} + \lambda_{\beta})/\lambda_{\nu}} - 1, & \text{if } \lambda_{\alpha} + \lambda_{\beta} \geq \lambda_{\nu}, \\
1, & \text{if } \lambda_{\alpha} + \lambda_{\beta} \leq \lambda_{\nu},
\end{cases}
\]
and
\[
\tilde{\gamma}_2 := \begin{cases}
1, & \text{if } \lambda_{\alpha} + \lambda_{\beta} + \lambda_{\nu} \geq p, \\
2^{1-(\lambda_{\alpha} + \lambda_{\beta} + \lambda_{\nu})/p}, & \text{if } \lambda_{\alpha} + \lambda_{\beta} + \lambda_{\nu} \leq p.
\end{cases}
\]

Then, it holds
\[
\int_{x_0}^{x} q(w) \left[\left((D_{x_0}^{\gamma_1} f_1)(w) \right)^{\lambda_{\alpha}} \cdot \left((D_{x_0}^{\gamma_2} f_2)(w) \right)^{\lambda_{\beta}} \cdot \left((D_{x_0}^{\nu} f_1)(w) \right)^{\lambda_{\nu}} \right] dw
\]
\[+ \left| (D_{x_0}^{\nu} f_1) (w) \right|^{\lambda_\nu} \cdot \left| (D_{x_0}^{\nu} f_2) (w) \right|^{\lambda_\nu} \cdot \left| (D_{x_0}^{\nu} f_3) (w) \right|^{\lambda_\nu} \right] \, dw \\
\leq A_0(x) \left(\frac{\lambda_\nu}{(\lambda_{\alpha} + \lambda_{\beta})(\lambda_{\alpha} + \lambda_{\beta} + \lambda_\nu)} \right)^{\lambda_\nu/p} \left[\lambda_{\alpha}^{\lambda_{\nu}/p} \gamma_1^{2(\nu - \lambda_\nu)/(\nu - \gamma_1 \lambda_{\beta})} \lambda_{\nu}/p \right]. \\
\left(\int_{x_0}^{x} p(w) \left(\left| (D_{x_0}^{\nu} f_1) (w) \right|^{\lambda_\nu} + \left| (D_{x_0}^{\nu} f_2) (w) \right|^{\lambda_\nu} \right) \, dw \right)^{(\lambda_{\alpha} + \lambda_{\beta} + \lambda_\nu)/p}, \quad (2.85) \\n\text{all } x_0 \leq x \leq b.
\]

Similarly, by (2.85), we obtain

Theorem 2.16. Let all basics as in Theorem 2.12. Here, \(\lambda_\nu, \lambda_{\alpha}, \lambda_{\beta} > 0 \), \(p := \lambda_{\alpha} + \lambda_{\beta} + \lambda_\nu > 1 \). Also \(P_k, k = 1, 2 \) as in (2.74), and \(A(w) \) as in (2.75). Here it is

\[A_0(R_2) := \left(\int_{R_1}^{R_2} (A(w))^{\lambda_{\alpha} + \lambda_{\beta}} \, dw \right)^{1/p}, \quad (2.86) \]

\[\gamma_1 := \begin{cases}
2((\lambda_{\alpha} + \lambda_{\beta})/\lambda_\nu) - 1, & \text{if } \lambda_{\alpha} + \lambda_{\beta} \geq \lambda_\nu, \\
1, & \text{if } \lambda_{\alpha} + \lambda_{\beta} \leq \lambda_\nu.
\end{cases} \quad (2.87) \]

Then

\[\int_{\mathbb{R}} \left[\left| \frac{\partial_{\gamma_1}^2 f_1(x)}{\partial r^{\gamma_1}} \right|^{\lambda_\nu} \cdot \left| \frac{\partial_{\gamma_1}^2 f_2(x)}{\partial r^{\gamma_1}} \right|^{\lambda_\nu} \cdot \left| \frac{\partial_{\gamma_1}^2 f_3(x)}{\partial r^{\gamma_1}} \right|^{\lambda_\nu} \right] \, dx \\
\leq A_0(R_2) \left(\frac{\lambda_\nu}{(\lambda_{\alpha} + \lambda_{\beta})p} \right)^{(\lambda_{\nu}/p)} \left[\lambda_{\alpha}^{\lambda_{\nu}/p} + 2((\lambda_{\alpha} + \lambda_{\beta})/(\gamma_1 \lambda_{\beta})^{\lambda_{\nu}/p}) \right] \\
\left(\int_{\mathbb{R}} \left(\left| \frac{\partial_{\gamma_1}^2 f_1(x)}{\partial r^{\gamma_1}} \right|^{\lambda_\nu} + \left| \frac{\partial_{\gamma_1}^2 f_2(x)}{\partial r^{\gamma_1}} \right|^{\lambda_\nu} \right) \, dx \right). \quad (2.88) \]

We need

Theorem 2.17. (see Anastassiou [4]) Let \(\nu \geq 3 \) and \(\gamma_1 \geq 1 \), such that \(\nu - \gamma_1 \geq 2 \). Let \(f_1, f_2 \in C_{2,x_0}^{\nu}([a, b]) \) with

\[f_1^{(i)}(x_0) = f_2^{(i)}(x_0) = 0, \quad i = 0, 1, \ldots, n - 1, \]

\(n := [\nu] \). Here \(x, x_0 \in [a, b] : x \geq x_0 \). Consider also, \(p(t) > 0 \), and \(q(t) \geq 0 \) continuous functions on \([x_0, b]\). Let

\[\lambda_{\alpha} \geq 0, \quad 0 < \lambda_{\alpha + 1} < 1, \]

and \(p > 1 \). Denote

\[\theta_3 := \begin{cases}
2\lambda_{\alpha}/(\lambda_{\alpha + 1}) - 1, & \text{if } \lambda_{\alpha} \geq \lambda_{\alpha + 1}, \\
1, & \text{if } \lambda_{\alpha} \leq \lambda_{\alpha + 1},
\end{cases} \]

\[L(x) := \left(2 \int_{x_0}^{x} (q(w))^{(1/(1-(\lambda_{\alpha + 1}))} \, dw \right)^{(1-\lambda_{\alpha + 1})} \left(\frac{\theta_3 \lambda_{\alpha + 1}}{\lambda_{\alpha} + \lambda_{\alpha + 1}} \right)^{\lambda_{\alpha + 1}} \lambda_{\alpha + 1}, \quad (2.89) \]
Theorem 2.18. Let \(\nu \geq 3, \gamma_1 \geq 1 \), such that \(\nu - \gamma_1 \geq 2 \), \(n := [\nu] \). Let \(f_1, f_2 \in C^n(\bar{A}) \) and there exist \(\frac{\partial^{\gamma_1} f_1(x)}{\partial r^{\gamma_1}}, \frac{\partial^{\gamma_1} f_2(x)}{\partial r^{\gamma_1}} \in C(\bar{A}) \), \(A := B(0, R_2) - B(0, R_1) \subseteq \mathbb{R}^N, N \geq 2 \). Furthermore assume \(\frac{\partial^j f_1}{\partial r^j} = \frac{\partial^j f_2}{\partial r^j} = 0, j = 0, 1, \ldots, n-1 \), on \(\partial B(0, R_1) \).

Let \(\lambda_\alpha > 0, 0 < \lambda_{\alpha+1} < 1 \), such that \(p := \lambda_\alpha + \lambda_{\alpha+1} > 1 \).

Denote

\[
\theta_3 := \left\{ \begin{array}{ll}
2^{(\lambda_\alpha/\lambda_{\alpha+1})} - 1 & \text{if } \lambda_\alpha \geq \lambda_{\alpha+1} \\
1 & \text{if } \lambda_\alpha \leq \lambda_{\alpha+1},
\end{array} \right.
\]

Then, it holds

\[
P_1(x) := \int_{x_0}^x (x - t)^{(\nu-\gamma_1-1)p/(p-1)}(p(t))^{-1/(p-1)} \, dt,
\]

\[
T(x) := L(x) \cdot \left(\frac{P_1(x)}{(p-1)/p} \right)^{(\lambda_\alpha + \lambda_{\alpha+1}) / (\nu - \gamma_1)},
\]

and

\[
\omega_1 := \left\{ \begin{array}{ll}
2^{1-(\lambda_\alpha + \lambda_{\alpha+1})/p} & \text{if } \lambda_\alpha + \lambda_{\alpha+1} \leq p, \\
1 & \text{if } \lambda_\alpha + \lambda_{\alpha+1} \geq p,
\end{array} \right.
\]

\[
\Phi(x) := T(x) \omega_1.
\]

Then, it holds

\[
\int_{x_0}^x q(w) \left[\left| (D_0^{\gamma_1} f_1)(w) \right|^{\lambda_\alpha} \cdot \left| (D_0^{\gamma_1} f_2)(w) \right|^{\lambda_{\alpha+1}} + \\
\left| (D_0^{\gamma_1} f_2)(w) \right|^{\lambda_\alpha} \cdot \left| (D_0^{\gamma_1} f_1)(w) \right|^{\lambda_{\alpha+1}} \right] \, dw
\]

\[
\leq \Phi(x) \left[\int_{x_0}^x p(w) \cdot \left| (D_0^{\gamma_1} f_1)(w) \right|^p + \left| (D_0^{\gamma_1} f_2)(w) \right|^p \, dw \right]^{(\lambda_\alpha + \lambda_{\alpha+1})/p},
\]

all \(x_0 \leq x \leq b \).

Similarly, by (2.94), we obtain

\[
T(x) := \left(\frac{P_1(x)}{(p-1)/p} \right)^{(\lambda_\alpha + \lambda_{\alpha+1}) / (\nu - \gamma_1)},
\]

\[
\omega_1 := \left\{ \begin{array}{ll}
2^{1-(\lambda_\alpha + \lambda_{\alpha+1})/p} & \text{if } \lambda_\alpha + \lambda_{\alpha+1} \leq p, \\
1 & \text{if } \lambda_\alpha + \lambda_{\alpha+1} \geq p,
\end{array} \right.
\]

\[
\Phi(x) := T(x) \omega_1.
\]

Then, it holds

\[
\int_{x_0}^x q(w) \left[\left| (D_0^{\gamma_1} f_1)(w) \right|^{\lambda_\alpha} \cdot \left| (D_0^{\gamma_1} f_2)(w) \right|^{\lambda_{\alpha+1}} + \\
\left| (D_0^{\gamma_1} f_2)(w) \right|^{\lambda_\alpha} \cdot \left| (D_0^{\gamma_1} f_1)(w) \right|^{\lambda_{\alpha+1}} \right] \, dw
\]

\[
\leq \Phi(x) \left[\int_{x_0}^x p(w) \cdot \left| (D_0^{\gamma_1} f_1)(w) \right|^p + \left| (D_0^{\gamma_1} f_2)(w) \right|^p \, dw \right]^{(\lambda_\alpha + \lambda_{\alpha+1})/p},
\]

all \(x_0 \leq x \leq b \).

Similarly, by (2.94), we obtain
\[\leq \Phi(R_2) \int_A \left(\left| \frac{\partial^\nu_{R_1} f_1(x)}{\partial r^\nu} \right|^p + \left| \frac{\partial^\nu_{R_1} f_2(x)}{\partial r^\nu} \right|^p \right) dx. \] (2.99)

We need

Theorem 2.19. (see Anastassiou [4]) *All here, as in Theorem 2.11. Consider the special case \(\lambda_\beta = \lambda_\alpha + \lambda_\nu. \) Denote

\[T(x) := A_0(x) \left(\frac{\lambda_\nu}{\lambda_\alpha + \lambda_\nu} \right)^{\lambda_\omega/p} 2^{(\nu - 2\lambda_\alpha - 3\lambda_\omega)/p}. \] (2.100)

Then, it holds

\[\int_{x_0}^x q(w) \left[\left| (D_{x_0}^{\gamma_1} f_1)(w) \right|^{\lambda_\omega} \left| (D_{x_0}^{\gamma_2} f_2)(w) \right|^{\lambda_\alpha + \lambda_\nu} \left| (D_{x_0}^{\nu} f_1)(w) \right|^{\lambda_\nu} \right. \]
\[+ \left. \left| (D_{x_0}^{\nu} f_1)(w) \right|^{\lambda_\alpha + \lambda_\nu} \left| (D_{x_0}^{\nu} f_2)(w) \right|^{\lambda_\omega} \left| (D_{x_0}^{\nu} f_2)(w) \right|^{\lambda_\nu} \right] dw \]
\[\leq T(x) \left(\int_{x_0}^x p(w) \left(\left| (D_{x_0}^{\nu} f_1)(w) \right|^p + \left| (D_{x_0}^{\nu} f_2)(w) \right|^p \right) dw \right) 2^{(\lambda_\alpha + \lambda_\nu)/p}, \] (2.101)

all \(x_0 \leq x \leq b. \)

Similarly, by (2.101), we get

Theorem 2.20. *Here all as in Theorem 2.12. Consider the case \(\lambda_\beta = \lambda_\alpha + \lambda_\nu; \lambda_\alpha \geq 0, \lambda_\nu > 0, \lambda_\beta > \frac{1}{2}, p := 2\lambda_\beta. \) Here \(P_k, k = 1, 2, \) as in (2.74) and \(A(w) \) as in (2.75). Set

\[A_0(R_2) := \left(\int_{R_1}^{R_2} (A(w))^{p/(2\lambda_\alpha + \lambda_\nu)} \right)^{\frac{(2\lambda_\alpha + \lambda_\omega)}{p}}. \] (2.102)

Also put

\[\bar{T}(R_2) := A_0(R_2) \left(\frac{\lambda_\nu}{\lambda_\beta} \right)^{\lambda_\omega} 2^{\left(-\frac{\lambda_\omega}{p}\right)}. \] (2.103)

Then

\[\int_A \left[\left| \frac{\partial_{R_1}^{\gamma_1} f_1(x)}{\partial r^{\gamma_1}} \right|^{\lambda_\omega} \left| \frac{\partial_{R_1}^{\gamma_2} f_2(x)}{\partial r^{\gamma_2}} \right|^{\lambda_\alpha + \lambda_\nu} \left| \frac{\partial_{R_1}^{\nu} f_1(x)}{\partial r^{\nu}} \right|^{\lambda_\nu} \right. \]
\[+ \left. \left| \frac{\partial_{R_1}^{\nu} f_1(x)}{\partial r^{\nu}} \right|^{\lambda_\alpha + \lambda_\nu} \left| \frac{\partial_{R_1}^{\nu} f_2(x)}{\partial r^{\nu}} \right|^{\lambda_\omega} \left| \frac{\partial_{R_1}^{\nu} f_2(x)}{\partial r^{\nu}} \right|^{\lambda_\nu} \right] dx \]
\[\leq \bar{T}(R_2) \int_A \left(\left| \frac{\partial_{R_1}^{\nu} f_1(x)}{\partial r^{\nu}} \right|^p + \left| \frac{\partial_{R_1}^{\nu} f_2(x)}{\partial r^{\nu}} \right|^p \right) dx. \] (2.104)

We need

Theorem 2.21. (see Anastassiou [4]) *Let \(\nu, \gamma_1, \gamma_2 \geq 1, \) such that \(\nu - \gamma_1 \geq 1, \nu - \gamma_2 \geq 1 \) and \(f_1, f_2 \in C_{x_0}^\nu([a, b]) \) with \(f_1^{(i)}(x_0) = f_2^{(i)}(x_0) = 0, i = 0, 1, \ldots, n - 1, n := \)
Then, it holds
\[
\int_{x_0}^{x} q(w) \left[\left| (D_{x_0}^\gamma f_1) (w) \right|^{\lambda_\alpha} \left| (D_{x_0}^\gamma f_2) (w) \right|^{\lambda_\beta} \left| (D_{x_0}^\nu f_1) (w) \right|^{\lambda_\nu} + \left| (D_{x_0}^\nu f_1) (w) \right|^{\lambda_\beta} \left| (D_{x_0}^\nu f_2) (w) \right|^{\lambda_\nu} \right] dw
\leq \frac{\rho(x)}{2} \left[\left\| D_{x_0}^\nu f_1 \right\|_{\infty}^{2(\lambda_\alpha + \lambda_\nu)} + \left\| D_{x_0}^\nu f_1 \right\|_{\infty}^{2\lambda_\beta} + \left\| D_{x_0}^\nu f_2 \right\|_{\infty}^{2\lambda_\beta} + \left\| D_{x_0}^\nu f_2 \right\|_{\infty}^{2(\lambda_\alpha + \lambda_\nu)} \right] ,
\] (2.106)
all \(x_0 \leq x \leq b \).

Similarly, by (2.106), we get

Theorem 2.22. Same basic assumptions as in Theorem 2.12. Let \(\lambda_\alpha, \lambda_\beta, \lambda_\nu \geq 0 \). Set
\[
\rho(R_2) := \frac{R_2^{N-1} (R_2 - R_1)^{(\nu \lambda_\alpha - \gamma_1 \lambda_\alpha + \nu \lambda_\beta - \gamma_2 \lambda_\beta + 1)} (\Gamma(\nu - \gamma_1 + 1))^{\lambda_\alpha} (\Gamma(\nu - \gamma_2 + 1))^{\lambda_\beta}}{(\nu \lambda_\alpha - \gamma_1 \lambda_\alpha + \nu \lambda_\beta - \gamma_2 \lambda_\beta + 1) (\Gamma(\nu - \gamma_1 + 1))^{\lambda_\alpha} (\Gamma(\nu - \gamma_2 + 1))^{\lambda_\beta}} .
\] (2.107)

Then
\[
\int_A \left[\left| \frac{\partial^\gamma_{R_1} f_1 (x)}{\partial r^{\gamma_1}} \right|^{\lambda_\alpha} \left| \frac{\partial^\gamma_{R_1} f_2 (x)}{\partial r^{\gamma_2}} \right|^{\lambda_\beta} \left| \frac{\partial^\nu_{R_1} f_1 (x)}{\partial r^{\nu}} \right|^{\lambda_\nu} + \left| \frac{\partial^\gamma_{R_1} f_1 (x)}{\partial r^{\gamma_1}} \right|^{\lambda_\beta} \left| \frac{\partial^\nu_{R_1} f_2 (x)}{\partial r^{\nu}} \right|^{\lambda_\nu} \right] dx
\leq \rho(R_2) \frac{\pi^{N/2}}{\Gamma(N/2)} \left[\left\| \frac{\partial^\nu_{R_1} f_1}{\partial r^{\nu}} \right\|_{\infty}^{2(\lambda_\alpha + \lambda_\nu)} + \left\| \frac{\partial^\nu_{R_1} f_1}{\partial r^{\nu}} \right\|_{\infty}^{2\lambda_\beta} + \left\| \frac{\partial^\nu_{R_1} f_2}{\partial r^{\nu}} \right\|_{\infty}^{2(\lambda_\alpha + \lambda_\nu)} \right] .
\] (2.108)

We need

Theorem 2.23. (see Anastassiou [4]) (Assume, as in Theorem 2.21, \(\lambda_\beta = 0 \).) It holds
\[
\int_{x_0}^{x} p(w) \left[\left| (D_{x_0}^\gamma f_1) (w) \right|^{\lambda_\alpha} \cdot \left| (D_{x_0}^\nu f_1) (w) \right|^{\lambda_\nu} + \left| (D_{x_0}^\gamma f_2) (w) \right|^{\lambda_\alpha} \cdot \left| (D_{x_0}^\nu f_2) (w) \right|^{\lambda_\nu} \right] dw
\leq \left(\frac{(x - x_0)^{(\nu \lambda_\alpha - \gamma_1 \lambda_\alpha + 1)} \left\| p(x) \right\|_{\infty}}{(\nu \lambda_\alpha - \gamma_1 \lambda_\alpha + 1) (\Gamma(\nu - \gamma_1 + 1))^{\lambda_\alpha}} \right) \cdot \left[\left\| D_{x_0}^\nu f_1 \right\|_{\infty}^{\lambda_\alpha + \lambda_\nu} + \left\| D_{x_0}^\nu f_2 \right\|_{\infty}^{\lambda_\alpha + \lambda_\nu} \right] ,
\] (2.109)
\[\int_{A} \left[\left| \frac{\partial^{n}_{R_{1}} f_{1}(x)}{\partial r^{\gamma_{1}}} \right|^{\lambda_{a}} \left| \frac{\partial^{n}_{R_{1}} f_{2}(x)}{\partial r^{\gamma_{2}}} \right|^{\lambda_{b}} + \left| \frac{\partial^{n}_{R_{1}} f_{1}(x)}{\partial r^{\gamma_{1}}} \right|^{\lambda_{a}} \left| \frac{\partial^{n}_{R_{1}} f_{2}(x)}{\partial r^{\gamma_{2}}} \right|^{\lambda_{b}} \right] \, dx \]

\[\leq \frac{2\pi^{N/2}}{\Gamma(N/2)} \frac{R_{2}^{N-1}(R_{2} - R_{1})^{(\nu \lambda_{a} - \gamma_{1} \lambda_{a} + 1)}(\Gamma(\nu - \gamma_{1} + 1))^{\lambda_{a}}}{\left(N = (2\nu \lambda_{a} - \gamma_{1} \lambda_{a} + \nu \lambda_{b} - \gamma_{2} \lambda_{a} - \gamma_{2} \lambda_{b} + 1)(\Gamma(\nu - \gamma_{1} + 1))^\lambda \right)} \cdot \left(\left| \frac{\partial^{n}_{R_{1}} f_{2}}{\partial r^{\gamma_{1}}} \right|^{\lambda_{a} + \lambda_{b}} \left| \frac{\partial^{n}_{R_{1}} f_{1}}{\partial r^{\gamma_{2}}} \right|^{\lambda_{a} + \lambda_{b}} \right) \right]. \]

(2.110)

We need

Theorem 2.25. (see Anastassiou [4]) (In relationship to Theorem 2.21, \(\lambda_{\beta} = \lambda_{a} + \lambda_{b} \).) It holds

\[\int \limits_{x_{0}}^{x} p(w) \left[\left| (D_{x_{0}}^{n} f_{1}) (w) \right|^{\lambda_{a}} \left| (D_{x_{0}}^{n} f_{2}) (w) \right|^{\lambda_{b}} \right] \, dw \]

\[\leq \frac{1}{\Gamma(\nu - \gamma_{2} + 1)^{\lambda_{a} + \lambda_{b}}} \left(\left| D_{x_{0}}^{n} f_{1} \left(D_{x_{0}}^{n} f_{2} \right) \right|^{\lambda_{a} + \lambda_{b}} \right) \]

all \(x_{0} \leq x \leq b \).

Similarly, by (2.111), we derive

Theorem 2.26. All as in Theorem 2.22. Assume \(\lambda_{\beta} = \lambda_{a} + \lambda_{b} \). Then

\[\int_{A} \left[\left| \frac{\partial^{n}_{R_{1}} f_{1}(x)}{\partial r^{\gamma_{1}}} \right|^{\lambda_{a}} \left| \frac{\partial^{n}_{R_{1}} f_{2}(x)}{\partial r^{\gamma_{2}}} \right|^{\lambda_{b}} + \left| \frac{\partial^{n}_{R_{1}} f_{1}(x)}{\partial r^{\gamma_{1}}} \right|^{\lambda_{a}} \left| \frac{\partial^{n}_{R_{1}} f_{2}(x)}{\partial r^{\gamma_{2}}} \right|^{\lambda_{b}} \right] \, dx \]

\[\leq \left(\frac{2\pi^{N/2}}{\Gamma(N/2)} \right) \frac{R_{2}^{N-1}(R_{2} - R_{1})^{(2\nu \lambda_{a} - \gamma_{1} \lambda_{a} + \nu \lambda_{b} - \gamma_{2} \lambda_{a} - \gamma_{2} \lambda_{b} + 1)}(\Gamma(\nu - \gamma_{1} + 1))^\lambda}{\left((2\nu \lambda_{a} - \gamma_{1} \lambda_{a} + \nu \lambda_{b} - \gamma_{2} \lambda_{a} - \gamma_{2} \lambda_{b} + 1)(\Gamma(\nu - \gamma_{1} + 1))^\lambda \right)} \cdot \left(\left| \frac{\partial^{n}_{R_{1}} f_{2}}{\partial r^{\gamma_{1}}} \right|^{\lambda_{a} + \lambda_{b}} \left| \frac{\partial^{n}_{R_{1}} f_{1}}{\partial r^{\gamma_{2}}} \right|^{\lambda_{a} + \lambda_{b}} \right). \]

(2.112)

We need
Theorem 2.27. (see Anastassiou [4]) (In relationship to Theorem 2.21, \(\lambda_\nu = 0, \lambda_\alpha = \lambda_\beta \).) It holds
\[
\int_{x_0}^b p(w) \left[|(D_{x_0}^{\gamma_1} f_1)(w)|^{\lambda_\alpha} \cdot |(D_{x_0}^{\gamma_2} f_2)(w)|^{\lambda_\beta} + \\
| (D_{x_0}^{\gamma_2} f_1)(w) |^{\lambda_\alpha} \cdot | (D_{x_0}^{\gamma_1} f_2)(w) |^{\lambda_\beta} \right] dw \\
\leq \rho^*(x) \left[\| D_{x_0}^{\nu} f_1 \|^2_{\infty} + \| D_{x_0}^{\nu} f_2 \|^2_{\infty} \right],
\]
(2.113)
all \(x_0 \leq x \leq b \).

Here
\[
\rho^*(x) := \left(\frac{(x - x_0)^{(2\nu\lambda_\alpha - \gamma_1\lambda_\alpha - \gamma_2\lambda_\alpha + 1)} \cdot \| p(x) \|_{\infty}}{(2\nu\lambda_\alpha - \gamma_1\lambda_\alpha - \gamma_2\lambda_\alpha + 1)(\Gamma(\nu - \gamma_1 + 1))^{\lambda_\alpha}(\Gamma(\nu - \gamma_2 + 1))^{\lambda_\alpha}} \right).
\]

(2.114)
We get, by (2.113), the result.

Theorem 2.28. All as in Theorem 2.22. Assume \(\lambda_\nu = 0, \lambda_\alpha = \lambda_\beta \). Then
\[
\int_A \left[\left| \frac{\partial_{R_1}^\nu f_1(x)}{\partial r^{\gamma_1}} \right|^{\lambda_\alpha} \left| \frac{\partial_{R_1} f_2(x)}{\partial r^{\gamma_2}} \right|^{\lambda_\beta} + \left| \frac{\partial_{R_1} f_1(x)}{\partial r^{\gamma_2}} \right|^{\lambda_\alpha} \left| \frac{\partial_{R_1}^\nu f_2(x)}{\partial r^{\gamma_1}} \right|^{\lambda_\beta} \right] dx \\
\leq \left(\frac{2\pi^{N/2}}{\Gamma(N/2)} \right) \rho^*(R_2) \left[\left\| \frac{\partial_{R_1}^{\nu} f_1}{\partial r^{\nu}} \right\|_{\infty}^{2\lambda_\alpha} + \left\| \frac{\partial_{R_1} f_2}{\partial r^{\nu}} \right\|_{\infty}^{2\lambda_\beta} \right],
\]
(2.115)
where
\[
\rho^*(R_2) := \left(\frac{R_2^{N-1}(R_2 - R_1)^{(2\nu\lambda_\alpha - \gamma_1\lambda_\alpha - \gamma_2\lambda_\alpha + 1)}}{(2\nu\lambda_\alpha - \gamma_1\lambda_\alpha - \gamma_2\lambda_\alpha + 1)(\Gamma(\nu - \gamma_1 + 1))^{\lambda_\alpha}(\Gamma(\nu - \gamma_2 + 1))^{\lambda_\alpha}} \right).
\]
(2.116)
We need

Theorem 2.29. (see Anastassiou [4]) (In relationship to Theorem 2.21, \(\lambda_\alpha = 0, \lambda_\beta = \lambda_\nu \).) It holds
\[
\int_{x_0}^b p(w) \left[|(D_{x_0}^{\gamma_2} f_2)(w)|^{\lambda_\beta} \cdot |(D_{x_0}^{\nu} f_1)(w)|^{\lambda_\beta} + \\
| (D_{x_0}^{\nu} f_1)(w) |^{\lambda_\beta} \cdot | (D_{x_0}^{\gamma_2} f_2)(w) |^{\lambda_\beta} \right] dw \\
\leq \left(\frac{(x - x_0)^{(\nu\lambda_\beta - \gamma_2\lambda_\beta + 1)} \cdot \| p(x) \|_{\infty}}{\nu\lambda_\beta - \gamma_2\lambda_\beta + 1)(\Gamma(\nu - \gamma_2 + 1))^{\lambda_\beta}} \right) \cdot \left[\left\| \frac{\partial_{R_1}^{\nu} f_1}{\partial r^{\nu}} \right\|_{\infty}^{2\lambda_\beta} + \left\| \frac{D_{x_0}^{\nu} f_2}{\partial r^{\nu}} \right\|_{\infty}^{2\lambda_\beta} \right],
\]
(2.117)
all \(x_0 \leq x \leq b \).

We get, by (2.113), the next result.

Theorem 2.30. All as in Theorem 2.22. Assume \(\lambda_\alpha = 0, \lambda_\beta = \lambda_\nu \). Then
\[
\int_A \left[\left| \frac{\partial_{R_1}^{\nu} f_2(x)}{\partial r^{\gamma_2}} \right|^{\lambda_\beta} \left| \frac{\partial_{R_1} f_1(x)}{\partial r^{\nu}} \right|^{\lambda_\beta} + \left| \frac{\partial_{R_1} f_1(x)}{\partial r^{\gamma_2}} \right|^{\lambda_\beta} \left| \frac{\partial_{R_1}^{\nu} f_2(x)}{\partial r^{\nu}} \right|^{\lambda_\beta} \right] dx
\]
\[\left(\frac{2\pi^{N/2}}{\Gamma(N/2)} \right) \left(\frac{R_2^{N-1} (R_2 - R_1)^{(\nu\lambda_\beta - 2\lambda_\beta + 1)}}{(\nu\lambda_\beta - 2\lambda_\beta + 1)(\Gamma(\nu - 2\lambda_\beta + 1))^{\lambda_\beta}} \right) \left[\left\| \frac{\partial^{\nu}_{\tau} f_1}{\partial \tau^\nu} \right\|_\infty^{2\lambda_\beta} \right] \]

\[+ \left\| \frac{\partial^{\nu}_{\tau} f_2}{\partial \tau^\nu} \right\|_\infty^{2\lambda_\beta} \].

(2.118)

We make

Assumption 2.1. Let \(\nu \geq 1, n := [\nu] \), \(f_j \in C^n(\overline{A}), j = 1, \ldots, M \in \mathbb{N} \), and there exist \(\frac{\partial f_j}{\partial \tau^\nu} \in C(\overline{A}), A := B(0, R_2) - B(0, R_1) \subseteq \mathbb{R}^N, N \geq 2 \). Furthermore assume that \(\frac{\partial f_j}{\partial \tau^\nu} = 0, i = 0, 1, \ldots, n-1 \), on \(\partial B(0, R_1) \), for all \(j = 1, \ldots, M \).

Next we present a set of multivariate fractional Opial type inequalities involving several functions over the shell.

We need

Theorem 2.31. (see Anastassiou [3]) Let \(\nu, \gamma_1, \gamma_2 \geq 1 \), such that \(\nu - \gamma_1 \geq 1, \nu - \gamma_2 \geq 1 \) and \(f_j \in C^{\nu}_{x_0}([a, b]) \) with \(f_j^{(i)}(x_0) = 0, i = 0, 1, \ldots, n-1, n := [\nu], j = 1, \ldots, M \in \mathbb{N} \). Here, \(x, x_0 \in [a, b] : x \geq x_0 \). Consider also \(p(t) > 0 \), and \(q(t) \geq 0 \) continuous functions on \([x_0, b] \). Let \(\lambda_\nu > 0 \) and \(\lambda_\alpha, \lambda_\beta \geq 0 \) such that \(\lambda_\nu < p \), where \(p > 1 \).

Set

\[P_k(w) := \int_{x_0}^{\infty} (w - t)^{(\nu - \gamma_k - 1)p} (p(t))^{-\frac{1}{p-1}} dt, \quad k = 1, 2, x_0 \leq w \leq b; \]

\[A(w) := \frac{q(w) \cdot (P_1(w))^{\lambda_\alpha(\frac{\nu-1}{p})} \cdot (P_2(w))^{\lambda_\beta(\frac{\nu-1}{p})} (p(w))^{-\frac{\lambda_\nu}{p}}}{(\Gamma(\nu - \gamma_1))^{\lambda_\alpha} \cdot (\Gamma(\nu - \gamma_2))^{\lambda_\beta}}; \]

\[A_0(x) := \left(\int_{x_0}^{\infty} A(w)^{\frac{\nu}{p - \lambda_\nu}} dw \right)^{\frac{\lambda_\nu}{p}}. \]

Call

\[\varphi_1(x) := \left(A_0(x) \right)_{\lambda_\beta = 0} \cdot \left(\frac{\lambda_\nu}{\lambda_\alpha + \lambda_\nu} \right)^{\frac{\lambda_\nu}{p}}, \]

\[\delta_1^* := \begin{cases} M^{1 - \frac{\lambda_\alpha + \lambda_\nu}{p}}, & \text{if } \lambda_\alpha + \lambda_\nu \leq p, \\ 2^{\frac{\lambda_\alpha + \lambda_\nu}{p}} - 1, & \text{if } \lambda_\alpha + \lambda_\nu \geq p. \end{cases} \]

If \(\lambda_\beta = 0 \), we obtain that

\[\int_{x_0}^{x} q(w) \left(\sum_{j=1}^{M} \left| (D_{x_0}^{\gamma_1} f_j)(w) \right|^{\lambda_\alpha} \cdot \left| (D_{x_0}^{\nu} f_j)(w) \right|^{\lambda_\beta} \right) dw \]

\[\leq \delta_1^* \cdot \varphi_1(x) \cdot \left[\int_{x_0}^{x} p(w) \left(\sum_{j=1}^{M} \left| (D_{x_0}^{\nu} f_j)(w) \right|^p \right) dw \right]^{\left(\frac{\lambda_\alpha + \lambda_\nu}{p} \right)} \]

all \(x_0 \leq x \leq b. \)

Similarly, by (2.124), we derive
Theorem 2.32. Let $f_{j}, j = 1, \ldots, M,$ as in Assumption 2.1. Let $\gamma_{1}, \gamma_{2} \geq 1,$ such that $\nu - \gamma_{1} \geq 1,$ $\nu - \gamma_{2} \geq 1$ Let $\lambda_{\nu} > 0,$ and $\lambda_{\beta} > 0;$ $\lambda_{\beta} \geq 0,$ $p := \lambda_{\alpha} + \lambda_{\nu} > 1.$ Set
\[
P_{k}(w) := \int_{R_{1}}^{w} (w-t)^{(\nu-\gamma_{k}-1)\frac{p}{p-1}} t^{(1-\frac{p}{p-1})} dt,
\]
for $k = 1, 2, R_{1} \leq w \leq R_{2},$
\[
A(w) := \frac{w^{(N-1)(1-\frac{p}{p-1})}(P_{1}(w))^\lambda_{\alpha}(P_{2}(w))^\lambda_{\beta}}{\Gamma(\nu-\gamma_{1})^\lambda_{\alpha}(\Gamma(\nu-\gamma_{2})^\lambda_{\beta},
\]
\[
A_{0}(R_{2}) := \left(\int_{R_{1}}^{R_{2}} (A(w))^{p/\lambda_{\nu}} dw \right)^{\lambda_{\nu}/p}.
\]
Take the case of $\lambda_{\beta} = 0.$ Then
\[
\sum_{j=1}^{M} \int_{A} \left| \frac{\partial_{R_{1}}^{\gamma_{1}} f_{j}(x)}{\partial r^{\gamma_{1}}} \right|^\lambda_{\nu} \left| \frac{\partial_{R_{1}}^{\gamma_{2}} f_{j}(x)}{\partial r^{\gamma_{2}}} \right|^\lambda_{\nu} dx
\]
\[
\leq (A_{0}(R_{2})|_{\lambda_{\beta}=0}) \left(\frac{\lambda_{\nu}}{p}\right)^{\lambda_{\nu} / p} \left[M \sum_{j=1}^{M} \left(\int_{A} \left| \frac{\partial_{R_{1}}^{\gamma_{1}} f_{j}(x)}{\partial r^{\gamma_{2}}} \right|^p dx \right) \right].
\]
We need

Theorem 2.33. (see Anastassiou [3]) All here as in Theorem 2.31. Denote
\[
\delta_{\beta} := \begin{cases} 2\frac{\lambda_{\beta}}{\lambda_{\nu}} - 1, & \text{if } \lambda_{\beta} \geq \lambda_{\nu}, \\
1, & \text{if } \lambda_{\beta} \leq \lambda_{\nu},
\end{cases}
\]
\[
\varepsilon_{2} := \begin{cases} 1, & \text{if } \lambda_{\nu} + \lambda_{\beta} \geq p, \\
M^{1-\frac{\lambda_{\nu}+\lambda_{\beta}}{p}}, & \text{if } \lambda_{\nu} + \lambda_{\beta} \leq p,
\end{cases}
\]
and
\[
\varphi_{2}(x) := (A_{0}(x)|_{\lambda_{\alpha}=0}) 2^{\frac{\lambda_{\nu}}{p}} \left(\frac{\lambda_{\nu}}{\lambda_{\beta} + \lambda_{\nu}} \right)^{\lambda_{\nu}/p} \delta_{\beta}^{\lambda_{\nu}/p}.
\]
If $\lambda_{\alpha} = 0,$ then is holds
\[
\int_{x_{0}}^{x} q(w) \left\{ \sum_{j=1}^{M} \left[(D_{x_{0}}^{\gamma_{2}} f_{j+1})(w) \right]^\lambda_{\beta} \left| (D_{x_{0}}^{\gamma_{2}} f_{j})(w) \right|^\lambda_{\nu} + \left| (D_{x_{0}}^{\gamma_{2}} f_{j})(w) \right|^{\lambda_{\nu}} \right\}
\]
\[
+ \left[(D_{x_{0}}^{\gamma_{2}} f_{j})(w) \right] \left| (D_{x_{0}}^{\gamma_{2}} f_{j+1})(w) \right|^{\lambda_{\nu}} \right\}
\]
\[
+ \left[(D_{x_{0}}^{\gamma_{2}} f_{M})(w) \right] \left| (D_{x_{0}}^{\gamma_{2}} f_{j+1})(w) \right|^{\lambda_{\nu}} \right\}
\]
\[
+ \left[(D_{x_{0}}^{\gamma_{2}} f_{j+1})(w) \right] \left| (D_{x_{0}}^{\gamma_{2}} f_{j+1})(w) \right|^{\lambda_{\nu}} \right\}
\]
\[
\leq 2^{\left(\frac{\lambda_{\nu}+\lambda_{\beta}}{p}\right)} \varepsilon_{2} \varphi_{2}(x) \cdot \left\{ \int_{x_{0}}^{x} p(w) \cdot \left[\sum_{j=1}^{M} \left| (D_{x_{0}}^{\gamma_{2}} f_{j})(w) \right|^{p} \right] dw \right\}^{\left(\frac{\lambda_{\nu}+\lambda_{\beta}}{p}\right)},
\]
for $x \geq x_{0}.$
Similarly, by (2.132), we obtain
Theorem 2.34. All basic assumptions as in Theorem 2.32. Let \(\lambda_\nu > 0, \lambda_\alpha = 0; \lambda_\beta > 0, \ p := \lambda_\nu + \lambda_\beta > 1, \ P_2 \) defined by (2.125).

Now it is

\[
A(w) := \frac{w^{(N-1)(1-\frac{\lambda_\nu}{p})(P_2(w))^{\lambda_\beta \frac{p-1}{p}}}}{(\Gamma(\nu - \gamma_2))^{\lambda_\beta}},
\]

(2.133)

\[
A_0(R_2) := \left(\int_{R_1}^{R_2} (A(w))^{p/\lambda_\beta} \, dw \right)^{\lambda_\beta/p}.
\]

(2.134)

Denote

\[
\delta_3 := \begin{cases}
2^{\lambda_\beta/\lambda_\nu} - 1, & \text{if } \lambda_\beta \geq \lambda_\nu, \\
1, & \text{if } \lambda_\beta < \lambda_\nu.
\end{cases}
\]

(2.135)

Call

\[
\varphi_2(R_2) := A_0(R_2) 2^{\lambda_\beta/p} \left(\frac{\lambda_\nu}{p} \right)^{\lambda_\nu/p} \delta_3^{\lambda_\nu/p}.
\]

(2.136)

Then

\[
\int_{A} \left\{ \sum_{j=1}^{M-1} \left[\left| \frac{\partial_{R_2} f_{j+1}(x)}{\partial r^{\gamma_2}} \right|^{\lambda_\beta} | \frac{\partial_{R_1} f_{j}(x)}{\partial r^{\nu}} |^{\lambda_\nu} \\
+ \left| \frac{\partial_{R_2} f_{j}(x)}{\partial r^{\gamma_2}} \right|^{\lambda_\beta} | \frac{\partial_{R_1} f_{j+1}(x)}{\partial r^{\nu}} |^{\lambda_\nu} \right] \\
+ \left| \frac{\partial_{R_2} f_M(x)}{\partial r^{\gamma_2}} \right|^{\lambda_\beta} | \frac{\partial_{R_1} f_1(x)}{\partial r^{\nu}} |^{\lambda_\nu} \\
+ \left| \frac{\partial_{R_2} f_1(x)}{\partial r^{\gamma_2}} \right|^{\lambda_\beta} | \frac{\partial_{R_1} f_{M}(x)}{\partial r^{\nu}} |^{\lambda_\nu} \right] \right\} \, dx
\]

\[
\leq 2 \varphi_2(R_2) \left[\sum_{j=1}^{M} \left(\int_{A} | \frac{\partial_{R_1} f_{j}(x)}{\partial r^{\nu}} |^{p} \, dx \right) \right]^{\lambda_\nu/p}.
\]

(2.137)

We need

Theorem 2.35. (see Anastassiou [3]) All here as in Theorem 2.31 \((\lambda_\alpha, \lambda_\beta \neq 0)\).

\[
\gamma_1 := \begin{cases}
2^{\frac{(\lambda_\alpha + \lambda_\beta)}{\lambda_\nu}} - 1, & \text{if } \lambda_\alpha + \lambda_\beta \geq \lambda_\nu, \\
1, & \text{if } \lambda_\alpha + \lambda_\beta < \lambda_\nu.
\end{cases}
\]

(2.138)

and

\[
\gamma_2 := \begin{cases}
1, & \text{if } \lambda_\alpha + \lambda_\beta + \lambda_\nu \geq p, \\
2^{1 - \frac{(\lambda_\alpha + \lambda_\beta + \lambda_\nu - p)}{p}}, & \text{if } \lambda_\alpha + \lambda_\beta + \lambda_\nu < p.
\end{cases}
\]

(2.139)

Set

\[
\varphi_3(x) := A_0(x) \cdot \left(\frac{\lambda_\nu}{(\lambda_\alpha + \lambda_\beta)(\lambda_\alpha + \lambda_\beta + \lambda_\nu)} \right)^{\lambda_\nu/p}.
\]

(2.140)
and

\[\varepsilon_3 := \begin{cases} 1, & \text{if } \lambda_\alpha + \lambda_\beta + \lambda_\nu \geq p, \\ M^{-1} \left(\frac{\lambda_\alpha + \lambda_\beta + \lambda_\nu}{p} \right), & \text{if } \lambda_\alpha + \lambda_\beta + \lambda_\nu \leq p, \end{cases} \]

(2.141)

Then it holds

\[
\int_{x_0}^{x} q(w) \left[\sum_{j=1}^{M-1} \left[\left(D_{x_0}^{\gamma_1} f_j (w) \right)^{\lambda_\alpha} \right] \left(D_{x_0}^{\gamma_2} f_{j+1} (w) \right)^{\lambda_\beta} \left(D_{x_0}^{\gamma_3} f_j (w) \right)^{\lambda_\nu} \\
+ \left(D_{x_0}^{\gamma_3} f_j (w) \right)^{\lambda_\beta} \left(D_{x_0}^{\gamma_2} f_{j+1} (w) \right)^{\lambda_\alpha} \left(D_{x_0}^{\gamma_1} f_j (w) \right)^{\lambda_\nu} \\
+ \left(D_{x_0}^{\gamma_1} f_1 (w) \right)^{\lambda_\alpha} \left(D_{x_0}^{\gamma_2} f_M (w) \right)^{\lambda_\beta} \left(D_{x_0}^{\gamma_3} f_1 (w) \right)^{\lambda_\nu} \\
+ \left(D_{x_0}^{\gamma_3} f_1 (w) \right)^{\lambda_\beta} \left(D_{x_0}^{\gamma_1} f_M (w) \right)^{\lambda_\alpha} \left(D_{x_0}^{\gamma_2} f_1 (w) \right)^{\lambda_\nu} \right] \, dw \\
\leq 2 \left(\frac{\lambda_\alpha + \lambda_\beta + \lambda_\nu}{p} \right)^{\frac{\lambda_\alpha + \lambda_\beta + \lambda_\nu}{p}} \varepsilon_3 \varphi_3(x) \cdot \left\{ \int_{x_0}^{x} p(w) \left[\sum_{j=1}^{M} \left(D_{x_0}^{\gamma} f_j (w) \right)^{p} \right] \, dw \right\}^{\frac{\lambda_\alpha + \lambda_\beta + \lambda_\nu}{p}}, \]

(2.142)

all \(x_0 \leq x \leq b \).

Similarly, by (2.142), we obtain

Theorem 2.36. All basic assumptions as in Theorem 2.32. Here \(\lambda_\nu, \lambda_\alpha, \lambda_\beta > 0, p := \lambda_\alpha + \lambda_\beta + \lambda_\nu > 1, P_k \) as in (2.125). \(A \) as in (2.126). Here

\[A_0(R_2) := \left(\int_{R_1}^{R_2} \left(A(w) \right)^{p/(\lambda_\alpha + \lambda_\beta)} \right)^{\frac{\lambda_\alpha + \lambda_\beta}{p}}, \]

(2.143)

\[\tilde{\gamma}_1 := \begin{cases} 2 \left(\frac{\lambda_\alpha + \lambda_\beta}{\lambda_\nu} \right) - 1, & \text{if } \lambda_\alpha + \lambda_\beta \geq \lambda_\nu, \\
1, & \text{if } \lambda_\alpha + \lambda_\beta \leq \lambda_\nu, \end{cases} \]

(2.144)

Put

\[\varphi_3(R_2) := A_0(R_2) \left(\frac{\lambda_\nu}{(\lambda_\alpha + \lambda_\beta)p} \right)^{(\lambda_\nu/p)} \left[\lambda_\alpha^{(\lambda_\nu/p)} + 2 \left(\frac{\lambda_\alpha + \lambda_\beta}{p} \right) \left(\tilde{\gamma}_1 \lambda_\beta \right)^{\lambda_\nu} \right]^{(\lambda_\nu/p)} \]

(2.145)

Then

\[
\int_{A} \left[\sum_{j=1}^{M-1} \left[\frac{\partial_1^{\gamma_1} f_j (x)}{\partial x} \right]^{\lambda_\alpha} \left[\frac{\partial_2^{\gamma_2} f_{j+1} (x)}{\partial x} \right]^{\lambda_\beta} \left[\frac{\partial_3^{\gamma_3} f_j (x)}{\partial x} \right]^{\lambda_\nu} + \\
\left[\frac{\partial_1^{\gamma_1} f_1 (x)}{\partial x} \right]^{\lambda_\alpha} \left[\frac{\partial_2^{\gamma_2} f_M (x)}{\partial x} \right]^{\lambda_\beta} \left[\frac{\partial_3^{\gamma_3} f_1 (x)}{\partial x} \right]^{\lambda_\nu} \right] \, dx \\
\leq 2 \varphi_3(R_2) \sum_{j=1}^{M} \left(\int_{A} \left| \frac{\partial_1^{\gamma_1} f_j (x)}{\partial x} \right|^p \, dx \right) \]

(2.146)
We need

Theorem 2.37. (see Anastassiou [3]) Let \(\nu \geq 3 \), and \(\gamma_1 \geq 1 \), such that \(\nu - \gamma_1 \geq 2 \).

Let \(f_j \in C_x^n([a, b]) \) with \(f_j^{(i)}(x_0) = 0 \), \(i = 0, 1, \ldots, n - 1 \), \(n := [\nu] \), \(j = 1, \ldots, M \in \mathbb{N} \).

Here, \(x, x_0 \in [a, b] : x \geq x_0 \). Consider also \(p(t) > 0 \), and \(q(t) \geq 0 \) continuous functions on \([x_0, b]\). Let \(\lambda_\alpha \geq 0 \), \(0 < \lambda_{\alpha+1} < 1 \) and \(p > 1 \). Denote

\[
\theta_3 := \begin{cases}
2^\frac{\nu - \lambda_{\alpha+1}}{\lambda_\alpha} - 1, & \text{if } \lambda_\alpha \geq \lambda_{\alpha+1}, \\
1, & \text{if } \lambda_\alpha \leq \lambda_{\alpha+1},
\end{cases} \tag{2.147}
\]

\[
L(x) := \left(2 \int_{x_0}^x (q(w))^{\frac{1}{\nu - \lambda_{\alpha+1}}} \, dw \right)^{(1 - \lambda_{\alpha+1})} \left(\frac{\theta_3 \lambda_{\alpha+1}}{\lambda_\alpha + \lambda_{\alpha+1}} \right)^\lambda_{\alpha+1}, \tag{2.148}
\]

and

\[
P_1(x) := \int_{x_0}^x (x - t)^{\frac{\nu - \lambda_{\alpha+1}}{\nu - \gamma_1}} (p(t))^{-\frac{1}{\nu - \gamma_1}} \, dt, \tag{2.149}
\]

\[
T(x) := L(x) \cdot \left(\frac{P_1(x)^{\frac{\nu - 1}{\nu - \gamma_1}}}{\Gamma(\nu - \gamma_1)} \right)^{(\lambda_\alpha + \lambda_{\alpha+1})}, \tag{2.150}
\]

and

\[
\omega_1 := \begin{cases}
2^\frac{\lambda_\alpha + \lambda_{\alpha+1}}{p}, & \text{if } \lambda_\alpha + \lambda_{\alpha+1} \leq p, \\
1, & \text{if } \lambda_\alpha + \lambda_{\alpha+1} \geq p,
\end{cases} \tag{2.151}
\]

\[
\Phi(x) := T(x) \omega_1.
\]

Also put

\[
\varepsilon_4 := \begin{cases}
1, & \text{if } \lambda_\alpha + \lambda_{\alpha+1} \geq p, \\
M^{1 - \frac{\lambda_\alpha + \lambda_{\alpha+1}}{p}}, & \text{if } \lambda_\alpha + \lambda_{\alpha+1} \leq p.
\end{cases} \tag{2.152}
\]

Then it holds

\[
\int_{x_0}^x q(w) \left\{ \sum_{j=1}^{M-1} \left[\left| (D_{x_0}^{\gamma_1} f_j)(w) \right|^{\lambda_\alpha} \left| (D_{x_0}^{\gamma_1+1} f_j+1)(w) \right|^{\lambda_{\alpha+1}} \\
+ \left| (D_{x_0}^{\gamma_1} f_{j+1})(w) \right|^{\lambda_\alpha} \left| (D_{x_0}^{\gamma_1+1} f_{j+1})(w) \right|^{\lambda_{\alpha+1}} \right] \right\} \\
+ \left[\left| (D_{x_0}^{\gamma_1} f_1)(w) \right|^{\lambda_\alpha} \left| (D_{x_0}^{\gamma_1+1} f_{M})(w) \right|^{\lambda_{\alpha+1}} \right] \\
+ \left[\left| (D_{x_0}^{\gamma_1} f_{M})(w) \right|^{\lambda_\alpha} \left| (D_{x_0}^{\gamma_1+1} f_{1})(w) \right|^{\lambda_{\alpha+1}} \right] \right\} \, dw \\
\leq 2^\frac{\lambda_\alpha + \lambda_{\alpha+1}}{p} \varepsilon_4 \Phi(x) \left[\int_{x_0}^x p(w) \left(\sum_{j=1}^{M} \left| (D_{x_0}^{\nu} f_j)(w) \right|^p \right) \, dw \right]^{\frac{\lambda_\alpha + \lambda_{\alpha+1}}{p}}, \tag{2.153}
\]

all \(x_0 \leq x \leq b \).

Similarly, by (2.153), we get
Theorem 2.38. Let all as in Assumptions 2.1. Here $\nu \geq 3$, $\gamma_1 \geq 1$ such that $\nu - \gamma_1 \geq 2$. Let $\lambda_\alpha > 0$, $0 < \lambda_{\alpha+1} < 1$, such that $p := \lambda_\alpha + \lambda_{\alpha+1} > 1$. Denote

$$\theta_3 := \begin{cases}
2^{(\lambda_\alpha/\lambda_{\alpha+1})} - 1, & \text{if } \lambda_\alpha \geq \lambda_{\alpha+1}, \\
1, & \text{if } \lambda_\alpha \leq \lambda_{\alpha+1},
\end{cases} \quad (2.154)$$

$$L(R_2) := \left[2 \left(\frac{1 - \lambda_{\alpha+1}}{N - \lambda_{\alpha+1}} \right) \left(\frac{N - \lambda_{\alpha+1}}{N - \lambda_{\alpha+1}} \right) \right]^{1 - \lambda_{\alpha+1}} \left(\frac{\theta_3 \lambda_{\alpha+1}}{\lambda_\alpha + \lambda_{\alpha+1}} \right)^{\lambda_{\alpha+1}}, \quad (2.155)$$

and

$$P(R_2) := \int_{R_1}^{R_2} (R_2 - t)^{(\nu - \gamma_1 - 1)(\frac{p}{\nu})} t^{\frac{N - \nu}{\nu}} dt, \quad (2.156)$$

$$\Phi(R_2) := L(R_2) \left(\frac{P_1(R_2)(p-1)}{(\Gamma(\nu - \gamma_1))^p} \right). \quad (2.157)$$

Then

$$\int_A \left\{ \sum_{j=1}^{M-1} \left[\frac{\partial^{\gamma_1} f_j(x)}{\partial r^{\gamma_1}} \right]^{\lambda_\alpha} \left[\frac{\partial^{\gamma_1+1} f_{j+1}(x)}{\partial r^{\gamma_1+1}} \right]^{\lambda_{\alpha+1}} + \left[\frac{\partial^{\gamma_1} f_{j+1}(x)}{\partial r^{\gamma_1}} \right]^{\lambda_\alpha} \left[\frac{\partial^{\gamma_1+1} f_{j+1}(x)}{\partial r^{\gamma_1+1}} \right]^{\lambda_{\alpha+1}} \right\} + \left[\frac{\partial^{\gamma_1} f_1(x)}{\partial r^{\gamma_1}} \right]^{\lambda_\alpha} \left[\frac{\partial^{\gamma_1+1} f_1(x)}{\partial r^{\gamma_1+1}} \right]^{\lambda_{\alpha+1}}$$

$$\int_{x_0}^{x} q(w) \left\{ \sum_{j=1}^{M-1} \left[(D_{x_0}^{\gamma_1} f_j)(w) \right]^{\lambda_\alpha} \left[(D_{x_0}^{\gamma_1+1} f_{j+1})(w) \right]^{\lambda_{\alpha+1}} \left[(D_{x_0}^{\nu} f_j)(w) \right]^{\lambda_{\nu}} \right\} \quad (2.158)$$

We need

Theorem 2.39. (see Anastassiou [3]) All here as in Theorem 2.31. Consider the special case $\lambda_\beta = \lambda_\alpha + \lambda_\nu$. Denote

$$\tilde{T}(x) := A_0(x) \left(\frac{\lambda_\nu}{\lambda_\alpha + \lambda_\nu} \right)^{\lambda_\nu} 2^{(\nu + 2\lambda_{\alpha+1})}, \quad (2.159)$$

$$\tilde{\varepsilon}_5 := \begin{cases}
1, & \text{if } 2(\lambda_\alpha + \lambda_\nu) \geq p, \\
M^{1 - \left(\frac{2(\lambda_\alpha + \lambda_\nu)}{p} \right)}, & \text{if } 2(\lambda_\alpha + \lambda_\nu) \leq p
\end{cases} \quad (2.160)$$

Then it holds

$$\int_{x_0}^{x} q(w) \left\{ \sum_{j=1}^{M-1} \left[(D_{x_0}^{\gamma_1} f_j)(w) \right]^{\lambda_\alpha} \left[(D_{x_0}^{\gamma_1+1} f_{j+1})(w) \right]^{\lambda_{\alpha+1}} \left[(D_{x_0}^{\nu} f_j)(w) \right]^{\lambda_{\nu}} \right\} \quad (2.158)$$
\[+ \left\{ \left(D_{x_0}^{\gamma_2} f_j \right)(w) \mid \left(D_{x_0}^{\gamma_1} f_{j+1} \right)(w) \mid \left(D_{x_0}^{\nu} f_{j+1} \right)(w) \mid \left(D_{x_0}^{\nu} f_{M} \right)(w) \right\} \sum_{j=1}^{M} \left(\left(D_{x_0}^{\nu} f_j \right)(w) \right)^p) \right] dw \]

\[\leq 2^{\left(\frac{2\lambda_\alpha + \lambda_\nu}{p} \right)} \tilde{T}(x) \left[\int_{x_0}^{x} p(w) \left(\sum_{j=1}^{M} \left(\left(D_{x_0}^{\nu} f_j \right)(w) \right)^p \right) \right], \quad (2.161) \]

all \(x_0 \leq x \leq b. \)

Similarly, by (2.161), we have

Theorem 2.40. Here all as in Theorem 2.32. Consider the case \(\lambda_\beta = \lambda_\alpha + \lambda_\nu; \)
\(\lambda_\alpha \geq 0, \lambda_\nu > 0, \lambda_\beta > 1/2, p := 2\lambda_\beta. \) Here \(P_k, k = 1, 2, \) as in (2.125) and \(A \) as in (2.126). Set

\[A_0(R_2) := \left(\int_{R_1}^{R_2} \left(A(w) \right)^p \left(\lambda_\nu \right)^{(2\lambda_\alpha + \lambda_\nu)} \right). \quad (2.162) \]

Also put

\[\tilde{T}(R_2) := A_0(R_2) \left(\frac{\lambda_\nu}{\lambda_\beta} \right)^{(2\lambda_\alpha + \lambda_\nu)} \quad (2.163) \]

Then

\[\int_{x_0}^{x} \left\{ \left(\sum_{j=1}^{M} \left(\frac{\partial_{R_1}^{\gamma_1} f_j(x)}{\partial \gamma_1} \right)^{\lambda_\alpha} \right) \left(\frac{\partial_{R_1}^{\gamma_2} f_{j+1}(x)}{\partial \gamma_2} \right)^{\lambda_\nu} \right\} \left(\frac{\partial_{R_1}^{\nu} f_j(x)}{\partial \nu} \right)^{\lambda_\nu} \]

\[\leq 2 \tilde{T}(R_2) \left[\sum_{j=1}^{M} \left(\int_{A} \left(\frac{\partial_{R_1}^{\nu} f_j(x)}{\partial \nu} \right)^p dx \right) \right], \quad (2.164) \]

We need

Theorem 2.41. (see Anastassiou [3]) Let \(\nu, \gamma_1, \gamma_2 \geq 1, \) such that \(\nu - \gamma_1 \geq 1, \nu - \gamma_2 \geq 1 \) and \(f_j \in C_{x_0}^{\nu}([a, b]) \) with \(f_j^{(i)}(x_0) = 0, i = 0, 1, \ldots, n-1, \quad n := \lceil \nu \rceil, \quad j = 1, \ldots, M \in \mathbb{N}. \) Here, \(x, x_0 \in [a, b]: x \geq x_0. \) Consider \(p(x) \geq 0 \) continuous functions on \([x_0, b]. \) Let \(\lambda_\alpha, \lambda_\beta, \lambda_\nu \geq 0. \) Set

\[\rho(x) := \frac{(x - x_0)^{\left(\nu \lambda_\alpha - \gamma_1 \lambda_\alpha + \nu \lambda_\beta - \gamma_2 \lambda_\beta + 1 \right)} \left\| p(x) \right\|_{\infty} \quad \left(\nu \lambda_\alpha - \gamma_1 \lambda_\alpha + \nu \lambda_\beta - \gamma_2 \lambda_\beta + 1 \right) \Gamma(\nu - \gamma_1 + 1) \Gamma(\nu - \gamma_2 + 1) \lambda_\beta. \quad (2.165) \]
Then it holds
\[
\int_{x_0}^{x} p(w) \left\{ \left\{ \sum_{j=1}^{M-1} \left[\left| (D^{\gamma_1}_{x_0} f_j) (w) \right|^{\lambda_1} \left| (D^{\gamma_2}_{x_0} f_{j+1}) (w) \right|^{\lambda_2} \left| (D^\nu_{x_0} f_j) (w) \right|^{\lambda_3} \right] \right\} + \left[\left| (D^{\gamma_1}_{x_0} f_j) (w) \right|^{\lambda_1} \left| (D^{\gamma_2}_{x_0} f_{j+1}) (w) \right|^{\lambda_2} \left| (D^\nu_{x_0} f_j) (w) \right|^{\lambda_3} \right] \right\} \right\}
\leq \rho(x) \left\{ \sum_{j=1}^{M} \left\{ \left\| (D^\nu_{x_0} f_j) \right\|_{\infty}^{2(\lambda_1+\lambda_2)} + \left\| (D^\nu_{x_0} f_j) \right\|_{\infty}^{2\lambda_3} \right\} \right\},
\tag{2.166}
\]
all \(x_0 \leq x \leq b \).

Similarly, by (2.166), we have

Theorem 2.42. All as in Assumption 2.1. Let \(\gamma_1, \gamma_2 \geq 1 \); such that \(\nu - \gamma_1 \geq 1 \), \(\nu - \gamma_2 \geq 1 \), \(\lambda_1, \lambda_2, \lambda_3 \geq 0 \). Set
\[
\rho(R_2) = \frac{R^{N-1}_2(R_2 - R_1)^{\nu (\lambda_1 - \gamma_1 \lambda_2 + \lambda_2 \gamma_2 \lambda_3 + 1)} (\Gamma (\nu - \gamma_1 + 1))^{\lambda_0} (\Gamma (\nu - \gamma_2 + 1))^{\lambda_3}. \tag{2.167}
\]
Then
\[
\int_{A} \left\{ \left\{ \sum_{j=1}^{M-1} \left[\left| \frac{\partial^{\gamma_1}_{R_1} f_j(x)}{\partial \tau^{\gamma_1}} \right|^{\lambda_1} \left| \frac{\partial^{\gamma_2}_{R_1} f_{j+1}(x)}{\partial \tau^{\gamma_2}} \right|^{\lambda_2} \left| \frac{\partial^\nu_{R_1} f_j(x)}{\partial \tau^\nu} \right|^{\lambda_3} \right] \right\} + \left[\left| \frac{\partial^{\gamma_1}_{R_1} f_j(x)}{\partial \tau^{\gamma_1}} \right|^{\lambda_1} \left| \frac{\partial^{\gamma_2}_{R_1} f_{j+1}(x)}{\partial \tau^{\gamma_2}} \right|^{\lambda_2} \left| \frac{\partial^\nu_{R_1} f_j(x)}{\partial \tau^\nu} \right|^{\lambda_3} \right] \right\} \right\}
\leq \frac{2\pi^{N/2}}{\Gamma (N/2)} \rho(R_2) \left\{ \sum_{j=1}^{M} \left\{ \left\| \frac{\partial^\nu_{R_1} f_j}{\partial \tau^\nu} \right\|_{\infty}^{2(\lambda_1+\lambda_2)} + \left\| \frac{\partial^\nu_{R_1} f_j}{\partial \tau^\nu} \right\|_{\infty}^{2\lambda_3} \right\} \right\}. \tag{2.168}
\]

We need

Theorem 2.43. (see Anastassiou [3]) (As in Theorem 2.41, \(\lambda_3 = 0 \). It holds
\[
\int_{x_0}^{x} p(w) \left\{ \sum_{j=1}^{M} \left[\left| (D^{\gamma_1}_{x_0} f_j) (w) \right|^{\lambda_1} \left| (D^\nu_{x_0} f_j) (w) \right|^{\lambda_3} \right] \right\} \right\}
\leq \left(\frac{(x - x_0)^{\nu \lambda_0 - \gamma_1 \lambda_1 + 1} \| p(x) \|_{\infty}}{(\nu \lambda_0 - \gamma_1 \lambda_1 + 1) (\Gamma (\nu - \gamma_1 + 1))^{\lambda_0}} \right) \cdot \left(\sum_{j=1}^{M} \left\| D^\nu_{x_0} f_j \right\|_{\infty}^{\lambda_0+\lambda_3} \right), \tag{2.169}
\]
all \(x_0 \leq x \leq b \).
Similarly, by (2.169), we obtain

Theorem 2.44. Here all as in Theorem 2.42. Case of $\lambda_\beta = 0$. Then

$$
\sum_{j=1}^{M} \left(\int_A \left| \frac{\partial_{\gamma_1} f_j(x)}{\partial r_{\gamma_1}} \right|^{\lambda_\alpha} \left| \frac{\partial_{\gamma_2} f_j(x)}{\partial r_{\gamma_2}} \right|^{\lambda_\nu} dx \right)
\leq \left(\frac{2\pi^{N/2}}{\Gamma(N/2)} \right) \left(\frac{R_{2}^{N-1}(R_2 - R_1)^{(\nu\lambda_\alpha - \gamma_1\lambda_\alpha + 1)}(\Gamma(\nu - \gamma_1 + 1))}{\Gamma(\nu - \gamma_2 + 1))^{\lambda_\alpha}} \right) \left(\sum_{j=1}^{M} \left\| \frac{\partial_{\gamma_2} f_j}{\partial r_{\gamma_2}} \right\|_{\infty}^{\lambda_\alpha + \lambda_\nu} \right).
$$

(2.170)

We need

Theorem 2.45. (see Anastassiou [3]) (As in Theorem 2.41, $\lambda_\beta = \lambda_\alpha + \lambda_\nu$.) It holds

$$
\int_{x_0}^{x} p(w) \left\{ \sum_{j=1}^{M-1} \left[\left| \frac{\partial_{\gamma_1} f_j}{\partial r_{\gamma_1}} (w) \right|^{\lambda_\alpha} \left| \frac{\partial_{\gamma_2} f_j}{\partial r_{\gamma_2}} (w) \right|^{\lambda_\nu} \left| \frac{\partial_{\gamma_1} f_{j+1}}{\partial r_{\gamma_1}} (w) \right|^{\lambda_\alpha} \left| \frac{\partial_{\gamma_2} f_{j+1}}{\partial r_{\gamma_2}} (w) \right|^{\lambda_\nu} \right]
+ \left| \frac{\partial_{\gamma_2} f_j}{\partial r_{\gamma_2}} (w) \right|^{\lambda_\alpha + \lambda_\nu} \left| \frac{\partial_{\gamma_1} f_j}{\partial r_{\gamma_1}} (w) \right|^{\lambda_\alpha} \right\} dw
\leq \left(\frac{2(x - x_0)^{(2\nu\lambda_\alpha - \gamma_1\lambda_\alpha + \nu\lambda_\nu - \gamma_2\lambda_\alpha - \gamma_2\lambda_\nu + 1)} \|p(x)\|_{\infty}}{(2\nu\lambda_\alpha - \gamma_1\lambda_\alpha + \nu\lambda_\nu - \gamma_2\lambda_\alpha - \gamma_2\lambda_\nu + 1)(\Gamma(\nu - \gamma_1 + 1))^{\lambda_\alpha}} \right)
\cdot \left(\sum_{j=1}^{M} \left\| \frac{\partial_{\gamma_2} f_j}{\partial r_{\gamma_2}} \right\|_{\infty}^{(2\lambda_\alpha + \lambda_\nu)} \right).
$$

(2.171)

all $x_0 \leq x \leq b$.

Similarly, by (2.171), we derive

Theorem 2.46. Here all as in Theorem 2.42. Case of $\lambda_\beta = \lambda_\alpha + \lambda_\nu$. Then

$$
\int_A \left\{ \sum_{j=1}^{M-1} \left[\left| \frac{\partial_{\gamma_1} f_j}{\partial r_{\gamma_1}} (x) \right|^{\lambda_\alpha} \left| \frac{\partial_{\gamma_2} f_{j+1}}{\partial r_{\gamma_2}} (x) \right|^{\lambda_\nu} \left| \frac{\partial_{\gamma_1} f_{j+1}}{\partial r_{\gamma_1}} (x) \right|^{\lambda_\alpha} \right]
+ \left| \frac{\partial_{\gamma_2} f_j}{\partial r_{\gamma_2}} (x) \right|^{\lambda_\alpha + \lambda_\nu} \left| \frac{\partial_{\gamma_1} f_j}{\partial r_{\gamma_1}} (x) \right|^{\lambda_\alpha} \right\} dx
\leq \frac{4\pi^{N/2}}{\Gamma(N/2)} \cdot \left(\frac{R_{2}^{N-1}(R_2 - R_1)^{(2\nu\lambda_\alpha - \gamma_1\lambda_\alpha + \nu\lambda_\nu - \gamma_2\lambda_\alpha - \gamma_2\lambda_\nu + 1)}(\Gamma(\nu - \gamma_1 + 1))^{\lambda_\alpha}}{(2\nu\lambda_\alpha - \gamma_1\lambda_\alpha + \nu\lambda_\nu - \gamma_2\lambda_\alpha - \gamma_2\lambda_\nu + 1)(\Gamma(\nu - \gamma_1 + 1))^{\lambda_\alpha}} \right).
$$

(2.172)
\[\frac{1}{(\Gamma(\nu - \gamma_2 + 1))(\lambda_\nu + \lambda_\omega)} \left(\sum_{j=1}^{M} \left\| \frac{\partial_{R_1}^\nu f_j}{\partial r^\nu} \right\|_\infty^{2(\lambda_\alpha + \lambda_\omega)} \right). \]

(2.172)

We need

Theorem 2.47. (see Anastassiou [3]) (As in Theorem 2.41, \(\lambda_\nu = 0, \lambda_\alpha = \lambda_\beta \)). It holds

\[\int_{x_0}^{x} p(w) \left\{ \sum_{j=1}^{M-1} \left[\left| (D_{x_0}^{\gamma_1} f_j) (w) \right|^{\lambda_\alpha} \left| (D_{x_0}^{\gamma_2} f_{j+1}) (w) \right|^{\lambda_\alpha} \\
+ \left| (D_{x_0}^{\gamma_2} f_j) (w) \right|^{\lambda_\alpha} \left| (D_{x_0}^{\gamma_1} f_{j+1}) (w) \right|^{\lambda_\alpha} \right] \right\} \\
+ \left\{ \left| (D_{x_0}^{\gamma_1} f_1) (w) \right|^{\lambda_\alpha} \left| (D_{x_0}^{\gamma_2} f_M) (w) \right|^{\lambda_\alpha} \right. \\
+ \left. \left| (D_{x_0}^{\gamma_2} f_1) (w) \right|^{\lambda_\alpha} \left| (D_{x_0}^{\gamma_1} f_M) (w) \right|^{\lambda_\alpha} \right\} \, dw \\
\leq 2 \rho^*(x) \left[\sum_{j=1}^{M} \left\| D_{x_0}^{\nu} f_j \right\|_\infty^{2\lambda_\alpha} \right], \]

(2.173)

all \(x_0 \leq x \leq b \). Here we have

\[\rho^*(x) := \left(\frac{(x - x_0)^{(2\nu\lambda_\alpha - 1)(\lambda_\lambda - \gamma_1\lambda_\omega + 1)} \| p(x) \|_\infty}{(2\nu\lambda_\lambda - 1)(\lambda_\lambda - \gamma_1\lambda_\omega + 1)(\Gamma(\nu - \gamma_1 + 1))^{\lambda_\alpha} \Gamma(\nu - \gamma_2 + 1))^{\lambda_\omega}} \right). \]

(2.174)

Similarly, by (2.174), we derive

Theorem 2.48. Here all as in Theorem 2.42. Case of \(\lambda_\nu = 0, \lambda_\alpha = \lambda_\beta \).

Then

\[\int_{A} \left\{ \sum_{j=1}^{M-1} \left[\left| \frac{\partial_{R_1}^{\gamma_1} f_j(x)}{\partial r^{\gamma_1}} \right|^{\lambda_\alpha} \left| \frac{\partial_{R_1}^{\gamma_2} f_{j+1}(x)}{\partial r^{\gamma_2}} \right|^{\lambda_\alpha} \\
+ \left| \frac{\partial_{R_1}^{\gamma_2} f_j(x)}{\partial r^{\gamma_2}} \right|^{\lambda_\alpha} \left| \frac{\partial_{R_1}^{\gamma_1} f_{j+1}(x)}{\partial r^{\gamma_1}} \right|^{\lambda_\alpha} \right] \right\} \\
+ \left\{ \left| \frac{\partial_{R_1}^{\gamma_1} f_1(x)}{\partial r^{\gamma_1}} \right|^{\lambda_\alpha} \left| \frac{\partial_{R_1}^{\gamma_2} f_M(x)}{\partial r^{\gamma_2}} \right|^{\lambda_\alpha} \right. \\
+ \left. \left| \frac{\partial_{R_1}^{\gamma_2} f_1(x)}{\partial r^{\gamma_2}} \right|^{\lambda_\alpha} \left| \frac{\partial_{R_1}^{\gamma_1} f_M(x)}{\partial r^{\gamma_1}} \right|^{\lambda_\alpha} \right\} \, dx \\
\leq \left(\frac{4\pi^{N/2}}{\Gamma(N/2)} \right) \rho^*(R_2) \left[\sum_{j=1}^{M} \left\| \frac{\partial_{R_1}^{\nu} f_j}{\partial r^{\nu}} \right\|_\infty^{2\lambda_\alpha} \right]. \]

(2.175)

Here we have

\[\rho^*(R_2) := \left(\frac{R_2^{N-1}(R_2 - R_1)^{(2\nu\lambda_\alpha - 1)(\lambda_\lambda - \gamma_1\lambda_\omega + 1)}}{(2\nu\lambda_\lambda - 1)(\lambda_\lambda - \gamma_1\lambda_\omega + 1)(\Gamma(\nu - \gamma_1 + 1))^{\lambda_\alpha} \Gamma(\nu - \gamma_2 + 1))^{\lambda_\omega}} \right). \]

(2.176)

We need
Theorem 2.49. (see Anastassiou [3]) (As in Theorem 2.41, $\lambda_\alpha = 0$, $\lambda_\beta = \lambda_\nu$). It holds

$$\int_{x_0}^{x} p(w) \left\{ \sum_{j=1}^{M-1} \left[\frac{1}{(D_{x_0}^\gamma f_j)(w)} \frac{1}{(D_{x_0}^\mu f_j)(w)} \right] \right. \right.$$

$$+ \left. \frac{1}{(D_{x_0}^\gamma f_j)(w)} \frac{1}{(D_{x_0}^\mu f_j)(w)} \right\} \right. \r
Hence, by ordinary integration by parts we have:
\[
\int_0^1 f(x) g^{(\nu)}(x) \, dx = \int_0^1 f(x) \, d \left(\mathcal{J}_{1-\alpha} \, g^{(n)} \right)(x)
\]
\[
= f(1) \left(\mathcal{J}_{1-\alpha} \, g^{(n)} \right)(1) - \int_0^1 \left(\mathcal{J}_{1-\alpha} \, g^{(n)} \right)(x) f'(x) \, dx,
\]
by \(\left(\mathcal{J}_{1-\alpha} \, g^{(n)} \right)(0) = 0 \).

Now we are ready to give

Definition 2.3. Let \(\nu > 0, \ n := [\nu], \ \alpha := \nu - n, \ g : [0, 1] \to \mathbb{R} \) such that there exists \(g^{(n)} \) which is measurable. Assume that \(\left(\mathcal{J}_{1-\alpha} \, g^{(n)} \right) \in L^1([0, 1]) \). We say that \(g^{(\nu)} \in L^1([0, 1]) \) is a **weak fractional derivative of order** \(\nu \) for \(g \), iff
\[
\int_0^1 u(x) \, g^{(\nu)}(x) \, dx = - \int_0^1 \left(\mathcal{J}_{1-\alpha} \, g^{(n)} \right)(x) u'(x) \, dx,
\]
\[
\forall u \in C^\infty([0, 1]) : u(1) = 0.
\]

Based on the above Definition 2.3, we can extend the concept of weak fractional differentiation to anchor points \(x_0 \neq 0 \), and to the multivariate case, especially to the radial case. Then try to generalize the results of this article.

References

