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ABSTRACT. In some previous papers we presented a fairly simple construction of a topologi-

cal degree for C1 Fredholm maps of index zero between Banach manifolds which verifies the three

fundamental properties of the classical degree theory: normalization, additivity and homotopy in-

variance. We show here that this degree is unique. Precisely, by an axiomatic approach similar to

the one due to Amann-Weiss, we prove that there exists at most one real function satisfying the

above properties, and this function must be integer valued.

AMS (MOS) Subject Classification. 47H11, 47A53, 58Cxx.

1. INTRODUCTION

In [2] and [3] we developed a degree theory for a class of C1 Fredholm maps of

index zero between real Banach manifolds. By our construction we extended and

simplified the Elworthy-Tromba approach to the degree theory avoiding the concept

of Fredholm structure and any related notion of orientation on the source and target

manifolds (see [6] and [7]).

To this purpose we introduced a concept of orientability for Fredholm maps of

index zero between Banach manifolds. This notion does not coincide with that given

by Fitzpatrick, Pejsachowicz and Rabier (see [8] and references therein), it is stable

(in the sense that any map “sufficiently close” to an orientable or nonorientable map

inherits the same property), and not based on the Leray-Schauder degree. More-

over, in the finite dimensional case, it turns out to be equivalent to the concept of

orientability for maps between not necessarily orientable manifolds introduced, with

completely different methods, by Dold in [5]. In particular, when f : M → N is a
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map acting between finite dimensional orientable manifolds of the same dimension,

an orientation of f (in our sense) can be regarded as a pair of orientations of M and

N , up to an inversion of both of them.

Our notion of orientability is based on an elementary, purely algebraic, definition

of orientation for an algebraic Fredholm linear operator of index zero L : E → F

acting between real vector spaces (no additional structure is needed). When the vector

spaces E and F are actually Banach and the operator L is bounded, an orientation

of L induces, by a sort of continuity, an orientation on any operator L′ sufficiently

close to L (in the operator norm). Thus, roughly speaking, an oriented map from an

open subset Ω of E into F is a nonlinear Fredholm map of index zero f : Ω → F

together with a function α which assigns, in a continuous way, an orientation α(x) of

the Fréchet derivative Df(x) of f at any x ∈ Ω. This notion of oriented map between

real Banach spaces is easily extended to the context of real Banach manifolds.

Concerning our notion of degree, consider two Banach manifolds M and N and

let f : M → N be an oriented Fredholm map of index zero. Given an open subset U

of M and an element y ∈ N , the triple (f, U, y) is said to be admissible if f−1(y)∩U

is compact. Our degree is defined as a map from the class of all admissible triples

into Z such that the classical properties of degree theory are verified.

The most significant properties of the degree (and the related concept of orien-

tation) are proved in [2, 3]. The purpose of this paper is to investigate the problem

of the uniqueness of the degree, that is, the problem to determine which properties,

thought as axioms, ensure that there exists a unique map verifying those properties.

In their celebrated paper [1] of 1973 Amann and Weiss showed that both the

Brouwer degree and the Leray-Schauder degree are uniquely determined by three

properties, namely Normalization, Additivity and Homotopy invariance, which they

considered as axioms. As regards the sole finite dimensional case, the uniqueness of

the Brouwer degree has been previously established by Führer (see [9] and [10]).

In this paper we obtain an analogous result concerning our degree. Namely,

we prove that there exists at most one real valued map, defined in the class of the

admissible triples, which verifies a particular Normalization property (stated for ori-

ented diffeomorphisms), with the more classical Additivity and Homotopy invariance

properties.

2. THE CONCEPT OF DETERMINANT IN INFINITE DIMENSION

Consider a real vector space E and denote by Ψ(E) the set of endomorphisms

of E of the form I −K, where K has finite dimensional image. It is known (see e.g.

[11]) that a notion of determinant is well defined for the operators of Ψ(E). Precisely,

let T = I −K ∈ Ψ(E) be given. If E0 is any nontrivial finite dimensional subspace

of E containing the image of K, the determinant of the restriction of T to E0 is

well defined. It is easy to verify that this value does not depend on E0. Thus, the

determinant detT of T is defined as the determinant of the restriction of T to any

nontrivial finite dimensional subspace of E containing the image of K.
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This notion of determinant verifies the following property, which generalized the

analogous well known result in finite dimension. For the details see [4, Proposi-

tion 3.1].

Lemma 2.1. Let E and F be two real vector spaces. If S : F → E is an isomorphism

and T ∈ Ψ(E), then S−1TS ∈ Ψ(F ) and det(S−1TS) = det(T ).

3. ORIENTABILITY FOR FREDHOLM MAPS

The section is devoted to a summary of the notion of orientability for nonlinear

Fredholm maps of index zero between Banach manifolds, introduced in [2, 3].

As a first step we consider two real vector spaces E and F and we give a definition

of orientation for a linear Fredholm operator L : E → F (at this level no topological

structure is needed). Let us recall that L is said to be (algebraic) Fredholm if KerL

and coKerL = F/ ImL are finite dimensional. The index of L is the integer

indL = dim KerL− dim coKerL.

Given a Fredholm operator of index zero L, we call corrector of L a linear operator

A : E → F such that

i) ImA has finite dimension,

ii) L+ A is an isomorphism.

It is easy to check that the set C(L) of correctors of L is nonempty. We define in

C(L) the following equivalence relation. Given A,B ∈ C(L), consider the automor-

phism

T = (L+B)−1(L+ A) = I − (L+B)−1(B −A)

of E. Clearly, K := (L+ B)−1(B − A) has finite dimensional image. Therefore, the

determinant of T is well defined and nonzero. We say that A is equivalent to B or,

more precisely, A is L-equivalent to B, if

det
(
(L+B)−1(L+ A)

)
> 0.

In [2] it is shown that this is actually an equivalence relation on C(L) with two

equivalence classes. This relation provides a concept of orientation of L.

Definition 3.1. Let L be a linear Fredholm operator of index zero between real

vector spaces. Each one of the two classes of C(L) is an orientation of L, and L

is oriented when one of them is chosen. Any of the two orientations of L is called

opposite to the other. If L is oriented, the elements of its orientation are called the

positive correctors of L.

The following notions of natural and unnatural orientations of an isomorphism

will be often mentioned throughout the paper.
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Definition 3.2. An oriented isomorphism L is said to be naturally oriented if the

trivial operator is a positive corrector, and we will refer to this orientation as the

natural orientation of L. Conversely, L is unnaturally oriented if the trivial operator

is not a positive corrector; in this case L assumes the unnatural orientation. The sign

of an oriented isomorphism L is defined as signL = 1 if L is naturally oriented and

signL = −1 otherwise.

From now on, the real vector spaces E and F will have the additional structure

of Banach spaces. Any Fredholm operator between Banach spaces will be assumed

to be bounded. Moreover, L(E,F ) will denote the Banach space of bounded linear

operators from E into F and Φ0(E,F ) will be the open subset of L(E,F ) of the

Fredholm operators of index zero. Given L ∈ Φ0(E,F ), the symbol C(L) now denotes,

with a slight abuse of notation, the set of bounded correctors of L, which is still

nonempty. Of course, the definition of orientation of L ∈ Φ0(E,F ) can be given as

the choice of one of the two equivalence classes of bounded correctors of L, according

to the above equivalence relation.

In the context of Banach spaces an orientation of a bounded linear Fredholm

operator of index zero induces an orientation to any sufficiently close operator. Pre-

cisely, consider L ∈ Φ0(E,F ) and a corrector A of L. Suppose that L is oriented

with A positive corrector. Since the set of the isomorphisms of E into F is open

in L(E,F ), then A is a corrector of every T in a suitable neighborhood W of L in

Φ0(E,F ). Thus, any T ∈ W can be oriented by taking A as a positive corrector.

This fact leads us to the following definition.

Definition 3.3. Let X be a topological space and h : X → Φ0(E,F ) a continuous

map. An orientation of h is a continuous choice of an orientation α(x) of h(x) for

each x ∈ X, where ‘continuous’ means that for any x ∈ X there exists A ∈ α(x)

which is a positive corrector of h(x′) for any x′ in a neighborhood of x. A map is

orientable when it admits an orientation and oriented when an orientation is chosen.

The properties of this notion of orientation are discussed in [2, 3]. Here we recall

just those results which will be used in the sequel.

Proposition 3.4. An orientable map h : X → Φ0(E,F ) admits at least two orienta-

tions. If, in particular, X is connected, then h admits exactly two orientations. In

addition, if X is simply connected and locally path connected, then h is orientable.

Remark 3.5. Referring to the above proposition, let α be an orientation of h and,

for any x ∈ X, assign to h(x) the opposite orientation α(x) of α(x). We obtain in this

way an orientation of h, which we call the opposite orientation of α. This explains

why h admits at least two orientations.

Notice that the set in which two orientations α and β of h coincide is open. For

this reason the set where β equals the opposite orientation α of α is open. Thus it

turns out to be open the set in which α and β do not coincide. Therefore, if X is

connected, h admits exactly two orientations, one the opposite of the other.
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In the case when h(x) is an isomorphism for all x ∈ X, with X not necessarily

connected, it is easy to see, by Definition 3.3, that h is orientable and admits (at least)

the two orientations, say α and β, such that, for every x ∈ X, α(x) is the natural

orientation of h(x) and β(x) is the unnatural one. We will call these orientations of

h the natural and unnatural orientation, respectively.

Definition 3.3 allows us to give a notion of orientability for Fredholm maps of

index zero between Banach spaces. Recall that, given an open subset Ω of E, a C1

map g : Ω → F is Fredholm of index n if its Fréchet derivative, Dg(x), is a Fredholm

operator of index n for all x ∈ Ω.

Definition 3.6. An orientation of a Fredholm map of index zero g : Ω → F is an

orientation of the derivative Dg : Ω → Φ0(E,F ), and g is orientable, or oriented, if

so is Dg according to Definition 3.3.

The above definition can be extended to the context of real Banach manifolds.

Recall that, given two real Banach manifolds M and N , a C1 map f : M → N is

Fredholm of index n if its Fréchet derivative, Df(x) : TxM → Tf(x)N , is Fredholm of

index n for any x ∈ M . Actually, if M and N are such that there exists a Fredholm

map of index zero f : M → N , then the two manifolds can be modeled on the same

Banach space. Thus, we will proceed by assuming that M and N are two real Banach

manifolds, modeled on a Banach space E.

Definition 3.7. Let f : M → N be a Fredholm map of index zero. An orientation

α of f is a continuous choice of an orientation α(x) of Df(x) for any x ∈ M ; where

‘continuous’ means that, given a selection of positive correctors {Ax ∈ α(x)}x∈M , and

two charts, φ : U → E of M and ψ : V → E of N , with f(U) ⊆ V , the family of

linear operators {
Dψ(f(φ−1(z)))Aφ−1(z)Dφ

−1(z)
}

z∈φ(U)

defines an orientation of the composite map ψfφ−1 : φ(U) → E. The map f is

orientable if admits an orientation and oriented when an orientation is chosen.

The next property will play a role in the proof of Lemma 5.5.

Remark 3.8. Let f : M → N be an oriented map and call α its orientation. Consider

two charts, φ : U → E of M and ψ : V → E of N , with f(U) ⊆ V and U connected.

Given u0 ∈ U , let Au0
belong to α(u0). Without loss of generality suppose that, for

any u in U , the operator Au, defined as

Au := Dψ−1(ψ(f(u)))
(
Dψ(f(u0))Au0

Dφ−1(φ(u0))
)
Dφ(u),

is a corrector of Df(u). Then, by Definitions 3.3 and 3.7, it is easy to see that Au is

actually a positive corrector of Df(u), that is, belongs to α(u). Roughly speaking,

this property asserts that, since there is a sort of continuous dependence on u of Au,

then, if u is close to u0, Au is a positive corrector of Df(u).

The following result is the analogue for Fredholm maps of Proposition 3.4 (see

[2, 3]).
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Proposition 3.9. An orientable map f : M → N admits at least two orientations.

If, in particular, M is connected, then f admits exactly two orientations. In addition,

if M is simply connected, then f is orientable.

Remark 3.10. Given f : M → N , if Df(x) is invertible for every x ∈M , then f can

be oriented in such a way that Df(x) is naturally oriented for every x ∈M . We call

this orientation the natural orientation of f . Analogously, if Df(x) is unnaturally

oriented for every x ∈ M , we say that f has the unnatural orientation (see also

Remark 3.5).

Definition 3.11. Let H : M× [0, 1] → N be a C1 map. We call H a Fredholm homo-

topy if it is Fredholm of index 1 or, equivalently, if any partial map Ht : x 7→ H(x, t)

(defined on M) is Fredholm of index zero. An orientation α of H is a continuous

choice of an orientation α(x, t) of DHt(x) for any (x, t) ∈ M × [0, 1]; where ‘contin-

uous’ means that given any two charts, φ : U → E of M and ψ : V → E of N , with

H(U × [0, 1]) ⊆ V , the following map, from φ(U) × [0, 1] into Φ0(E), defined by

(z, t) 7→ Dψ(H(φ−1(z), t))DHt(φ
−1(z))Dφ−1(z),

can be oriented (according to Definition 3.3) choosing as positive correctors the op-

erators

Dψ(H(φ−1(z), t))ADφ−1(z),

with A ∈ α(φ−1(z), t) and (z, t) ∈ φ(U)× [0, 1] . The map H is orientable if it admits

an orientation and oriented when an orientation is chosen.

Given an oriented Fredholm homotopy H : M × [0, 1] → N , it is immediate to

observe that any partial map Ht : M → N is oriented. Conversely, we have the

following result (see [2, 3]).

Proposition 3.12. Given a Fredholm homotopy H : M × [0, 1] → N , suppose that

Ht is orientable for a given t ∈ [0, 1]. Then H is orientable. In addition, assume that

Ht is oriented and call α its orientation. Then there exists a unique orientation of

H, say β, such that β(x, t) = α(x) for any x ∈M .

4. DEGREE FOR ORIENTED MAPS

In this section we give a summary of the construction, given in [2, 3], of the

degree for oriented Fredholm maps of index zero between Banach manifolds.

Definition 4.1. Let f : M → N be an oriented Fredholm map of index zero. Given

an open subset U of M and an element y ∈ N , the triple (f, U, y) is said to be

admissible if f−1(y) ∩ U is compact.

The degree is defined as a map which to every admissible triple (f, U, y) assigns

an integer, deg(f, U, y), in such a way that the following three fundamental properties

hold:
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i) (Normalization) Let f : M → N be a diffeomorphism onto an open subset of N .

If f is naturally oriented, then

deg(f,M, y) = 1, ∀y ∈ f(M).

ii) (Additivity) Given an admissible triple (f, U, y) and two disjoint open subsets

U1, U2 of U such that f−1(y) ∩ U ⊆ U1 ∪ U2, then,

deg(f, U, y) = deg(f |U1
, U1, y) + deg(f |U2

, U2, y).

iii) (Homotopy invariance) Let H : M × [0, 1] → N be an oriented Fredholm homo-

topy. Let y : [0, 1] → N be a continuous path. If the set

{(x, t) ∈M × [0, 1] : H(x, t) = y(t)}

is compact, then deg(Ht,M, y(t)) does not depend on t ∈ [0, 1].

The degree is first defined in the special case when (f, U, y) is a regular triple,

that is, when (f, U, y) is admissible and y is a regular value for f in U . This implies

that f−1(y) ∩ U is a finite set. In this case we define

deg(f, U, y) =
∑

x∈f−1(y)∩U

signDf(x), (4.1)

where, recalling Definition 3.2, signDf(x) = 1 if Df(x) : TxM → TyN is naturally

oriented, and signDf(x) = −1 otherwise.

Now, given any admissible triple (f, U, y), let us recall that, as a byproduct of

Sard–Smale Lemma [12], we know that the set of regular values of f is dense in N .

Thus, using also the fact that Fredholm maps are locally proper, we prove (see [2,

Lemma 3.2]) that, given any admissible triple (f, U, y), if U1 and U2 are sufficiently

small open neighborhoods of f−1(y)∩U , and y1, y2 ∈ N are two regular values for f ,

sufficiently close to y, then

deg(f, U1, y1) = deg(f, U2, y2).

This property implies that the following definition of degree for general admissible

triples is well posed.

Definition 4.2. Let (f, U, y) be admissible and let W be any open neighborhood of

f−1(y) ∩ U such that W ⊆ U and f is proper on W . Let V be an open connected

neighborhood of y in N which is disjoint from f(∂W ). Define

deg(f, U, y) = deg(f,W, z),

where z is any regular value for f |W belonging to V .
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5. UNIQUENESS OF THE DEGREE

In this section we prove the main result of the paper, i.e. that there exists at

most one real map, defined in the class of all admissible triples, which verifies the

three fundamental properties: Normalization, Additivity and Homotopy invariance.

Thus, such a map turns out to be integer valued and necessarily coincides with the

degree for oriented Fredholm maps between real Banach manifolds, whose definition

has been recalled in the above section.

We proceed as follows. Let T be the family of all admissible triples and call

d : T → R a map which verifies the three fundamental properties. We prove first

that, if f : M → N is an unnaturally oriented diffeomorphism into N , then

d(f,M, y) = −1, ∀y ∈ f(M). (5.1)

Therefore, as a consequence of the above equality and the first two fundamental

properties, we show that, for every regular triple (f, U, y), one has

d(f, U, y) =
∑

x∈f−1(y)∩U

signDf(x). (5.2)

The above formula ensures the uniqueness of d on the subfamily of T of regular

triples. Moreover, by the Homotopy invariance property and by using, as a crucial

tool, the local properness of nonlinear Fredholm maps, we prove the uniqueness of

d. Finally, since the function deg verifies the three fundamental properties, one has

d = deg.

To help the reader we divide the section in four steps.

Step 1. This is a preliminary part in which we show some properties of d

following from the Additivity.

Given any oriented Fredholm map f : M → N , the triple (f, ∅, y) is admissible

for all y ∈ N , being the empty set compact. Therefore, by the Additivity property,

we get

d(f, ∅, y) = d(f |∅, ∅, y) + d(f |∅, ∅, y),

and

d(f |∅, ∅, y) = d(f |∅, ∅, y) + d(f |∅, ∅, y)

Hence, one has

d(f, ∅, y) = d(f |∅, ∅, y) = 0.

By the above equality and the Additivity we obtain the following (often neglected)

Localization property.

Proposition 5.1 (Localization). Let (f, U, y) be an admissible triple. Then,

d(f, U, y) = d(f |U , U, y).

Proof. By the Additivity one has

d(f, U, y) = d(f |U , U, y) + d(f |∅, ∅, y).

Then, the assertion follows being d(f |∅, ∅, y) = 0.
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Another consequence of the Additivity (and of the Localization) is the Excision

property, which basically assert that d(f, U, y) depends only on the behavior of f in

any neighborhood of f−1(y) ∩ U .

Proposition 5.2 (Excision). If (f, U, y) is admissible and V is an open subset of U

such that f−1(y) ∩ U ⊆ V , then (f, V, y) is admissible and

d(f, U, y) = d(f, V, y).

Proof. The triple (f, V, y) is clearly admissible. From the Additivity and the fact that

d(f |∅, ∅, y) = 0, it follows

d(f, U, y) = d(f |V , V, y).

On the other hand, the Localization implies that

d(f, V, y) = d(f |V , V, y).

Thus, the assertion follows.

From the Excision we obtain the Existence property.

Proposition 5.3 (Existence). Let d(f, U, y) be nonzero. Then, the equation f(x) = y

admits at least one solution in U .

Proof. Assume that f−1(y) ∩ U is empty. By the Excision property, taking V = ∅,

we get

d(f, U, y) = d(f, ∅, y) = 0,

which contradicts the assumption.

Remark 5.4. As an immediate consequence of the Additivity and the Localization

properties it follows that, given an admissible triple (f, U, y) and two disjoint open

subsets U1, U2 of U such that f−1(y) ∩ U ⊆ U1 ∪ U2, one has

d(f, U, y) = d(f, U1, y) + d(f, U2, y). (5.3)

The reader who is familiar with the degree theory probably observes that the

above equality (5.3) is the classical version of the Additivity property, which is usually

mentioned in the literature. Actually, we believe not possible to prove the above

Localization property by means of this classical version of the Additivity.

Step 2. Let f : M → N be an unnaturally oriented diffeomorphism and y ∈

f(M) be given. In this step we prove that d(f,M, y) = −1.

Let φ : U → Ũ be a chart, where

i) U is an open subset of M containing f−1(y);

ii) Ũ is an open subset of the Banach space E.
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Up to an isomorphism, we can regard E as

E = R × E2. (5.4)

Without loss of generality, assume that

Ũ = (−1, 1) × Ṽ ,

where Ṽ is an open ball in E2 centered at zero. Up to a diffeomorphism between

Ũ and another open subset of E, we can assume, without loss of generality, that

φ(f−1(y)) ∈ (1/2, 1) × Ṽ .

Let γ : (−1, 1) → [0, 1) be a map verifying the following assumptions:

i) γ is C1 and surjective;

ii) γ(t) = γ(−t), for any t;

iii) γ(t) = |t|, for any t ∈ (−1,−1/2] ∪ [1/2, 1);

iv) γ′(t) 6= 0, for any t 6= 0.

Clearly, condition iv) implies that γ is injective on [0, 1) and on (−1, 0], and,

by condition ii), γ′(0) = 0. Consider the C1 map Γ : Ũ → Ũ , defined as Γ(t, x) =

(γ(t), x). Given any fixed (t, x) ∈ Ũ , the Fréchet derivative of Γ at (t, x) can be

represented, with respect to the splitting (5.4), by the matrix

DΓ(t, x) =

(
γ′(t) 0

0 I2

)
,

where I2 stands for the identity of E2. It is immediate to observe that DΓ(t, x) is a

Fredholm operator of index zero, as sum of a Fredholm operator of index zero and a

finite dimensional operator. Hence, Γ is a Fredholm map of index zero.

Define g : U → N by

g(u) =
(
fφ−1Γφ

)
(u).

Since g is the composition of Fredholm maps of index zero, then it is Fredholm

of index zero (recall that the composition of two Fredholm maps of indices m and n

is Fredholm of index m+ n).

Figure 1. The two diffeomorphic sets U and Ũ .
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Call X the submanifold of U given by X = φ−1({0} × Ṽ ). Call U− and U+ the

open subsets of U given by

U− = φ−1((−1, 0) × Ṽ ) and U+ = φ−1((0, 1) × Ṽ ). (5.5)

Since Γ is a diffeomorphism on (−1, 0) × Ṽ and on (0, 1) × Ṽ , so are the restrictions

of g to U− and U+.

By Proposition 3.9, g is orientable because its domain is simply connected, being

diffeomorphic to Ũ . Since U is connected, again by Proposition 3.9, g admits exactly

two orientations, which are uniquely determined by the choice of the orientation of

Dg at a chosen point of U .

An useful property concerning the orientations of g is stated in the following

lemma.

Lemma 5.5. Consider any orientation β of g. Then β is the natural orientation of

g on U− if and only if it is the unnatural orientation on U+.

Proof. Let us start by introducing the linear operator A0 : E → E, defined, with

respect to the decomposition (5.4), by the matrix

A0 =

(
1 0

0 0

)
.

Since Ũ is simply connected, then Γ is orientable. Let Γ be oriented in such a

way that A0 is a positive corrector of DΓ(0, 0) and call α this orientation. Let δ > 0

be such that A0 is still a positive corrector of DΓ(t, 0) for all t ∈ (−δ, δ). For any

t ∈ (−δ, δ), t 6= 0, one has

(
DΓ(t, 0)

)−1(
DΓ(t, 0) + A0

)
=

(
1 + 1

γ′(t)
0

0 I2

)
.

The above composition is a finite dimensional perturbation of the identity of E.

Hence, its determinant is well defined (see Section 2) and coincides with 1+ 1
γ′(t)

, which

is negative for any negative t sufficiently close to zero, and positive for any positive t.

Therefore, recalling the equivalence relation defined in Section 3, the trivial operator

is a positive corrector of DΓ(t, 0) if t ∈ (0, δ), whereas it is not a positive corrector if t

is negative and close to zero. In other words, DΓ(t, 0) is naturally oriented if t ∈ (0, δ)

and unnaturally oriented if t is negative and close to zero. In addition, as the two

restrictions of Γ to (0, 1)× Ṽ and (−1, 0)× Ṽ are diffeomorphisms, then α(t, x) is the

natural orientation of DΓ(t, x) for every (t, x) ∈ (0, 1)× Ṽ , since we have proved that

α(t, 0) is the natural orientation of DΓ(t, 0) for some positive t. Analogously, α(t, x)

is the unnatural orientation of DΓ(t, x) for every (t, x) ∈ (−1, 0) × Ṽ .

Denote u0 := φ−1(0, 0) and ψ := φf−1 : f(U) → Ũ , which is a diffeomorphism.

For any u ∈ U , consider the linear operator Bu : TuM → Tg(u)N , defined as

Bu = Dψ−1
(
ψ(g(u))

)
A0Dφ(u) = Dψ−1

(
Γ(φ(u))

)
A0Dφ(u).
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This operator has clearly finite dimensional image. In addition, a straightforward

computation shows that, for any u,

Dψ(g(u))
(
Dg(u) +Bu

)
Dφ−1(φ(u)) = DΓ(φ(u)) + A0.

This implies that Bu is a corrector of Dg(u) for u close to u0.

Without loss of generality, we may suppose that Bu0
belongs to β(u0). By the

property of the orientation recalled in Remark 3.8, one has that Bu ∈ β(u) for any u

in a suitable neighborhood, say O, of u0 in U . Fix u ∈ O. One has

(
Dg(u)

)−1 (
Dg(u) +Bu

)
=
(
Dg(u)

)−1
(
Dg(u) +Bu

)
Dφ−1(φ(u))Dφ(u) =

(
Dg(u)

)−1
[
D(fφ−1Γ)(φ(u)) +

(
Dψ−1(ψ(g(u)))A0

)]
Dφ(u) =

(
Dg(u)

)−1
Dψ−1(ψ(g(u)))Dψ(g(u))

[
D(fφ−1Γ)(φ(u)) + (Dψ−1(ψ(g(u)))A0)

]
Dφ(u) =

(
Dg(u)

)−1
Dψ−1(ψ(g(u)))

[
DΓ(φ(u)) + A0

]
Dφ(u) =

(
Dφ(u)

)−1 (
DΓ(φ(u))

)−1
[
DΓ(φ(u)) + A0

]
Dφ(u).

The equality between the first and the last term of the above formula and Lemma

2.1 say that the determinant of
(
Dg(u)

)−1(
Dg(u) + Bu

)
coincides with that of(

DΓ(φ(u))
)−1[

DΓ(φ(u)) + A0

]
. Therefore, recalling how Γ is oriented, β(u) turns

out to be the natural orientation of Dg(u) if u ∈ O ∩ U+, and the unnatural orienta-

tion of Dg(u) if u ∈ O∩U−. As U+ and U− are connected, β is the natural orientation

of g on U+ and the unnatural one on U−.

Analogously, one can prove that the opposite orientation β of β is the natural

orientation of g on U− and the unnatural one on U+. This concludes the proof.

Consider W+ = φ−1
(
(1/2, 1) × Ṽ

)
and observe that g coincides with f in W+,

since γ(t) = t for every t ∈ (1/2, 1).

Let us choose the orientation of g that coincides in W+ with the orientation of

f . That is, g is unnaturally oriented in W+. The Localization property implies that

d(g,W+, y) and d(f,W+, y) coincide.

Let p+ be the unique element in W+ such that g(p+) = y. Denote (tp+
, xp+

) =

φ(p+) and p− = φ−1(−tp+
, xp+

). By the definition of γ, one immediately has that

g−1(y) = {p−, p+}.

Consider W− = φ−1
(
(−1,−1/2) × Ṽ

)
, which is clearly open in U , disjoint from

W+ and contains p−. Applying Lemma 5.5, we have that g|W−
is a naturally oriented

diffeomorphism. The triple (g, U, y) is admissible and, by the Additivity property,

d(g, U, y) = d(g|W+
,W+, y) + d(g|W−

,W−, y). (5.6)
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Let us show that the above value is zero. In fact, consider the homotopy

H : U × [−1, 1] → N, H(u, s) = g(u),

and the path

σ : [−1, 1] → N, σ(s) =
(
fφ−1

)
(stp+

, xp+
).

The homotopy H is clearly a Fredholm homotopy, which we assume oriented with

the orientation induced by that of g.

The set S = {(u, s) ∈ U × [−1, 1] : H(u, s) = σ(s)} is compact, since it coincides

with φ−1([0, tp+
] × {xp}).

This argument allows us to apply the Homotopy invariance property. Thus,

d(g, U, σ(s)) is well defined and independent of s. Since g−1(σ(−1)) is empty and

σ(1) = y, by the Existence property one has

d(g, U, σ(−1)) = 0.

Hence, d(g, U, y) = 0 and then, recalling formula (5.6),

d(g|W+
,W+, y) = −d(g|W−

,W−, y).

By the Normalization property we have deg(g|W−
,W−, y) = 1. In addition, since

the restrictions of f and g to W+ coincide, then d(f |W+
,W+, y) = d(g|W+

,W+, y).

Hence

d(f |W+
,W+, y) = −1.

Finally, by Localization and Excision, we obtain d(f,M, y) = −1.

Step 3. We are now in the position to prove formula (5.2). Let (f, U, y) be a

regular triple. We know that f−1(y)∩U is a finite set, say {x1, ..., xn}. Since Df(xi)

is an isomorphism for any i = 1, ..., n, we can apply the Inverse Function Theorem,

obtaining that there exist n pairwise disjoint neighborhoods U1, ..., Un of x1, ..., xn,

respectively, such that each restriction f |Ui
is a diffeomorphism onto an open subset

of N . By the Additivity property we have

d(f, U, y) =

n∑

i=1

d(f |Ui
, Ui, y).

On the other hand, by the above step 2 and the Normalization property, it follows

d(f |Ui
, Ui, y) = signDf(xi)

and this proves formula (5.2).

Step 4. In this final step we conclude the proof of the uniqueness of d. As a

consequence we obtain that d = deg on the whole family T .

Let (f, U, y) be an admissible triple. Since f is locally proper, we can consider

an open subset W of U , containing f−1(y)∩U , such that W ⊆ U and f is proper on

W . By the Excision property (Proposition 5.2) we have

d(f, U, y) = d(f,W, y).
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Being f a closed map on W , we can take a regular value z of f |W and a con-

tinuous path σ : [0, 1] → N with σ(0) = y, σ(1) = z and such that the set

{(u, t) ∈W × [0, 1] : f(u) = y(t)} is compact. By the Homotopy invariance property

and formula (5.2) one has

d(f,W, y) = d(f,W, z) =
∑

x∈f−1(y)∩W

signDf(x),

and this shows the uniqueness of d.

At the end of this procedure we have obtained that any map defined on the class

T of all admissible triples and verifying the three fundamental properties is actually

the degree.
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