FIXED POINT RESULTS FOR MAPS WITH WEAKLY SEQUENTIALLY CLOSED GRAPHS

DONAL O’REGAN

School of Mathematics, Statistics and Applied Mathematics
National University of Ireland
Galway, Ireland
E-mail: donal.oregan@nuigalway.ie

ABSTRACT. In this paper we present an alternative of Leray-Schauder type and a fixed point result of Furi-Pera type. An application is given to illustrate our theory.

AMS (MOS) Subject Classification. 47H10, 47H04, 47H09, 47H14

1. INTRODUCTION

In this paper we first prove an alternative of Leray-Schauder type. This in particular improves a result in [5] where a condition was omitted. Then using this Leray-Schauder alternative we will obtain a new fixed point result of Furi-Pera type. This improves a result in [6] where one of the conditions was incorrectly stated and its proof needs to be adjusted slightly (see Theorem 2.4 below). Our results in particular extend those of [2, 3, 5, 12]. For the remainder of this section we gather some notations and preliminary facts. Let X be a Banach space, let $B(X)$ denote the collection of all nonempty bounded subsets of X and $W(X)$ the subset of $B(X)$ consisting of all weakly compact subsets of X. Also, let B_r denote the closed ball centered at 0 with radius r.

Definition 1.1. A function $\psi : B(X) \to \mathbb{R}_+$ is said to be a measure of weak noncompactness if it satisfies the following conditions:

1. The family $\ker(\psi) = \{M \in B(X) : \psi(M) = 0\}$ is nonempty and $\ker(\psi)$ is contained in the set of relatively weakly compact sets of X.
2. $M_1 \subseteq M_2 \Rightarrow \psi(M_1) \leq \psi(M_2)$.
3. $\psi(\overline{co}(M)) = \psi(M)$, where $\overline{co}(M)$ is the closed convex hull of M.
4. $\psi(\lambda M_1 + (1 - \lambda)M_2) \leq \lambda \psi(M_1) + (1 - \lambda)\psi(M_2)$ for $\lambda \in [0, 1]$.
5. If $(M_n)_{n \geq 1}$ is a sequence of nonempty weakly closed subsets of X with M_1 bounded and $M_1 \supseteq M_2 \supseteq \cdots \supseteq M_n \supseteq \cdots$ such that $\lim_{n \to \infty} \psi(M_n) = 0$, then $M_\infty := \bigcap_{n=1}^{\infty} M_n$ is nonempty.
The family ker ψ described in (1) is said to be the kernel of the measure of weak noncompactness ψ. Note that the intersection set M_∞ from (5) belongs to ker ψ since $\psi(M_\infty) \leq \psi(M_n)$ for every n and $\lim_{n \to \infty} \psi(M_n) = 0$. Also, it can be easily verified that the measure ψ satisfies
\begin{equation}
\psi(\overline{M^w}) = \psi(M)
\end{equation}
where $\overline{M^w}$ is the weak closure of M.

A measure of weak noncompactness ψ is said to be regular if
\begin{equation}
\psi(M) = 0 \text{ if and only if } M \text{ is relatively weakly compact,}
\end{equation}
subadditive if
\begin{equation}
\psi(M_1 + M_2) \leq \psi(M_1) + \psi(M_2),
\end{equation}
homogeneous if
\begin{equation}
\psi(\lambda M) = |\lambda|\psi(M), \quad \lambda \in \mathbb{R},
\end{equation}
set additive if
\begin{equation}
\psi(M_1 \cup M_2) = \max(\psi(M_1), \psi(M_2)).
\end{equation}

An important example of a measure of weak noncompactness has been defined by De Blasi [8] as follows:
\begin{equation}
w(M) = \inf\{r > 0 : \text{there exists } W \in \mathcal{W}(X) \text{ with } M \subseteq W + B_r\},
\end{equation}
for each $M \in \mathcal{B}(X)$.

Notice that $w(\cdot)$ is regular, homogeneous, subadditive and set additive (see [8]).

Let X and Y be topological spaces. A multivalued map $F : X \to 2^Y$ is a point to set function if for each $x \in X$, $F(x)$ is a nonempty subset of Y. For a subset M of X we write $F(M) = \bigcup_{x \in M} F(x)$ and $F^{-1}(M) = \{x \in X : F(x) \cap M \neq \emptyset\}$. The graph of F is the set $\text{Gr}(F) = \{(x, y) \in X \times Y : y \in F(x)\}$. We say that F is upper semicontinuous (u.s.c. for short) at $x \in X$ if for every neighborhood V of $F(x)$ there exists a neighborhood U of x with $F(U) \subseteq V$ (equivalently, $F : X \to 2^Y$ is u.s.c. if for any net $\{x_\alpha\}$ in X and any closed set B in Y with $x_\alpha \to x_0 \in X$ and $F(x_\alpha) \cap B \neq \emptyset$ for all α, we have $F(x_0) \cap B \neq \emptyset$). We say that $F : X \to 2^Y$ is upper semicontinuous if it is upper semicontinuous at every $x \in X$. The function F is lower semicontinuous (l.s.c.) if the set $F^{-1}(B)$ is open for any open set B in Y. If F is l.s.c. and u.s.c., then F is continuous.

If Y is compact, and the images $F(x)$ are closed, then F is upper semicontinuous if and only if F has a closed graph. In this case, if Y is compact, we have that F is upper semicontinuous if $x_n \to x$, $y_n \to y$, and $y_n \in F(x_n)$, together imply that $y \in F(x)$. When X is a Banach space we say that $F : X \to 2^X$ is weakly upper
semicontinuous if F is upper semicontinuous in X endowed with the weak topology. Also, $F : X \to 2^X$ is said to have weakly sequentially closed graph if the graph of F is sequentially closed w.r.t. the weak topology of X.

Definition 1.2. Let X be a Banach space and let ψ be a measure of weak noncompactness on X. A multivalued mapping $B : D(B) \subseteq X \to 2^X$ is said to be ψ-condensing if it maps bounded sets into bounded sets and $\psi(B(S)) < \psi(S)$ whenever S is a bounded subset of $D(B)$ such that $\psi(S) > 0$.

The following Sadovskii type fixed point theorem (see [5]) for multivalued mappings with weakly sequentially closed graph will be used in Section 2.

Theorem 1.3. Let X be a Banach space, ψ a regular set additive measure of weak noncompactness on X and C a nonempty closed convex subset of X. Suppose $F : C \to C(C)$ is ψ-condensing, $F(C)$ is bounded and F has weakly sequentially closed graph; here $C(C)$ denotes the family of nonempty, closed, convex subsets of C. Then F has a fixed point.

2. FIXED POINT THEOREMS

Our first result is a Leray-Schauder alternative principle.

Theorem 2.1. Let X be a Banach space and ψ a regular set additive measure of weak noncompactness on X. Let Q and C be closed, convex subsets of X with $Q \subseteq C$. In addition, let U be a weakly open subset of Q with $0 \in U$. Suppose $F : U^w \to C(C)$ has weakly sequentially closed graph, $F(U^w)$ is bounded and F is a ψ-condensing map. Also assume U is weakly open in C and F transforms relatively weakly compact sets into relatively weakly compact sets. Then either

\[(2.1) \quad F \text{ has a fixed point,}\]

or

\[(2.2) \quad \text{there is a point } u \in \partial_Q U \text{ and } \lambda \in (0,1) \text{ with } u \in \lambda Fu;\]

where $\partial_Q U$ is the weak boundary of U in Q.

Proof. Suppose (2.2) does not occur and F does not have a fixed point on $\partial_Q U$ (otherwise we are finished since (2.1) occurs). Let

$$M = \{x \in \overline{U^w} : x \in \lambda Fx \text{ for some } \lambda \in [0,1]\}.$$

The set M is nonempty since $0 \in U$. Also M is weakly sequentially closed. Indeed let (x_n) be sequence of M which converges weakly to some $x \in \overline{U^w}$ and let (λ_n) be a sequence of $[0,1]$ satisfying $x_n \in \lambda_n Fx_n$. Then for each n there is a $z_n \in Fx_n$ with $x_n = \lambda_n z_n$. By passing to a subsequence if necessary, we may assume that (λ_n)
converges to some \(\lambda \in [0, 1] \) and without loss of generality assume \(\lambda_n \neq 0 \) for all \(n \).

This implies that the sequence \((z_n) \) converges weakly to some \(z \in \overline{U^w} \) with \(x = \lambda z \).

Since \(F \) has weakly sequentially closed graph then \(z \in F(x) \). Hence \(x \in \lambda Fx \) and therefore \(x \in M \). Thus \(M \) is weakly sequentially closed. We now claim that \(M \) is relatively weakly compact. Suppose \(\psi(M) > 0 \). Since \(M \subseteq \text{co}(F(M) \cup \{0\}) \) then

\[
\psi(M) \leq \psi(\text{co}(F(M) \cup \{0\})) = \psi(F(M)) < \psi(M),
\]

which is a contradiction. Hence \(\psi(M) = 0 \) and therefore \(\overline{M^w} \) is weakly compact. This proves our claim. Now let \(x \in \overline{M^w} \). Since \(\overline{M^w} \) is weakly compact (Eberlein-Šmulian theorem [10 pg. 549]) then there is a sequence \((x_n) \) in \(M \) which converges weakly to \(x \). Since \(M \) is weakly sequentially closed we have \(x \in M \). Thus \(\overline{M^w} = M \). Hence \(M \) is weakly closed and therefore weakly compact. From our assumptions we have \(M \cap \partial Q U = \emptyset \). Since \(X \) endowed with the weak topology is a locally convex space then there exists a continuous mapping \(\rho : \overline{U^w} \to [0, 1] \) with \(\rho(M) = 1 \) and \(\rho(\partial Q U) = 0 \).

Let

\[
J(x) = \begin{cases}
\rho(x)F(x), & x \in \overline{U^w}, \\
0, & x \in C \setminus \overline{U^w}.
\end{cases}
\]

Clearly \(J : C \to C(C) \) has weakly sequentially closed graph since \(F \) has sequentially closed graph. Moreover, for any \(S \subseteq C \) we have

\[J(S) \subseteq \text{co}(J(S \cap U) \cup \{0\}).\]

If \(\psi(S \cap U) > 0 \) then

\[\psi(J(S)) \leq \psi(\text{co}(F(S \cap U) \cup \{0\})) = \psi(F(S \cap U)) < \psi(S \cap U) \leq \psi(S),\]

whereas if \(\psi(S \cap U) = 0 \) then

\[\psi(J(S)) \leq \psi(F(S \cap U)) = 0 < \psi(S),\]

if \(\psi(S) > 0 \). Thus \(J : C \to C(C) \) is \(\psi \)-condensing. From Theorem 1.3 there exists \(x \in C \) such that \(x \in J(x) \). Now \(x \in U \) since \(0 \in U \). Consequently \(x \in \rho(x)F(x) \) and so \(x \in M \). This implies \(\rho(x) = 1 \) and so \(x \in F(x) \).

\[\square\]

Remark 2.2. In Theorem 2.1 above notice \(\partial Q U = \partial C U \). We note that the condition \(U \) is weakly open in \(C \) was omitted in Theorem 2.6 in [4] and in Theorem 2.1 (and the other results in Section 2) in [13] and the condition \(F \) transforms relatively weakly compact sets into relatively weakly compact sets was omitted in Theorem 2.2 in [5].

Corollary 2.3. Let \(X \) be a Banach space and \(\psi \) a regular set additive measure of weak noncompactness on \(X \). Let \(C \) be a closed, convex subsets of \(X \). In addition let \(U \) be a weakly open subset of \(C \) with \(0 \in U \). Suppose \(F : \overline{U^w} \to C(C) \) has weakly sequentially closed graph, \(F(\overline{U^w}) \) is bounded and \(F \) is a \(\psi \)-condensing map. Also
assume F transforms relatively weakly compact sets into relatively weakly compact sets. Then either

\begin{equation}
F \text{ has a fixed point,}
\end{equation}

or

\begin{equation}
\text{there is a point } u \in \partial_C U \text{ and } \lambda \in (0,1) \text{ with } u \in \lambda Fu;
\end{equation}

here $\partial_C U$ is the weak boundary of U in C.

Our next result is a Furi-Pera type result.

Theorem 2.4. Let X be a Banach space and ψ a regular and set additive measure of weak noncompactness on X. Let C be a closed convex subset of X and Q a closed convex subset of C with $0 \in Q$. Assume the weak topology on C is metrizable. Also, assume $F : Q \to C(C)$ has weakly sequentially closed graph, F is ψ-condensing map, $F(Q)$ bounded and F transforms relatively weakly compact sets into relatively weakly compact sets. In addition, assume that the following conditions are satisfied:

(i) there exists a weakly continuous retraction $r : X \to Q$, with $r(D) \subseteq \overline{co}(D \cup \{0\})$ for any bounded subset D of X and $r(x) = x$ for $x \in Q$.

(ii) if $\{(x_j, \lambda_j)\}_{j=1}^\infty$ is a sequence in $Q \times [0,1]$ with $x_j \rightharpoonup x \in \partial Q$, $\lambda_j \to \lambda$ and $x \in \lambda F(x)$, $0 \leq \lambda < 1$, then $\lambda_j F(x_j) \subseteq Q$ for j sufficiently large; here ∂Q is the weak boundary of Q relative to C.

Then F has a fixed point in Q.

Proof. Let r be as described in (i) and let

\[B = \{ x \in X : x \in Fr(x) \}. \]

We first show that $B \neq \emptyset$. To see this, consider $Fr : C \to C(C)$. Clearly Fr has weakly sequentially closed graph, since F has weakly sequentially closed graph and r is weakly continuous. Now we show that Fr is a ψ-condensing map. To see this, let A be a bounded subset of C and $\psi(A) > 0$. Now

\[Fr(A) \subseteq Fr(\overline{co}(A \cup \{0\})). \]

Note $\psi(\overline{co}(A \cup \{0\})) = \psi(A) > 0$ so

\[\psi(Fr(A)) < \psi(\overline{co}(A \cup \{0\})) = \psi(A). \]

Thus Fr is a ψ-condensing map. Now Theorem 1.3 guarantees that there exists $y \in C$ with $y \in Fr(y)$. Thus $y \in B$ and $B \neq \emptyset$. Note B is weakly sequentially closed, since Fr has weakly sequentially closed graph. Moreover, we claim that B is weakly compact. To see this, first note

\[B \subseteq Fr(B) \subseteq Fr(\overline{co}(B \cup \{0\})). \]
If \(\psi(B) > 0 \) then since \(\psi(\overline{\psi}(B \cup \{0\})) = \psi(B) > 0 \) we have

\[
\psi(B) \leq \psi(F \overline{\psi}(B \cup \{0\})) < \psi(\overline{\psi}(B \cup \{0\})) = \psi(B),
\]

a contradiction. Thus, \(\psi(B) = 0 \) and so \(B \) is relatively weakly compact. Now let \(x \in \overline{B^w} \). Since \(\overline{B^w} \) is weakly compact then there is a sequence \((x_n) \) of elements of \(B \) which converges weakly to some \(x \). Since \(B \) is weakly sequentially closed then \(x \in B \). Thus, \(\overline{B^w} = B \). This implies that \(B \) is weakly compact.

We now show that \(B \cap Q \neq \emptyset \). Suppose \(B \cap Q = \emptyset \). From our assumption the weak topology on \(C \) is metrizable, let \(d^* \) denote the metric. With respect to \((C, d^*) \) note \(Q \) is closed, \(B \) is compact, \(B \cap Q = \emptyset \) so there exists \(\epsilon > 0 \) with

\[
d^*(B, Q) = \inf\{d^*(x, y) : x \in B, y \in Q\} > \epsilon.
\]

For \(i \in \{1, 2 \ldots \} \), let

\[
U_i = \left\{ x \in C : d^*(x, Q) < \frac{\epsilon}{i} \right\}.
\]

For each \(i \in \{1, 2 \ldots \} \) fixed, \(U_i \) is open with respect to \(d^* \) and so \(U_i \) is weakly open in \(C \). Also

\[
\overline{U_i^w} = \overline{U_i^{d^*}} = \left\{ x \in C : d^*(x, Q) \leq \frac{\epsilon}{i} \right\} \text{ and } \partial U_i = \left\{ x \in C : d^*(x, Q) = \frac{\epsilon}{i} \right\}.
\]

Note \(\overline{U_i^w} \cap B = \emptyset \), so Corollary 2.3 (with \(F = Fr, U = U_i \)) guarantees that there exists \(y_i \in \partial U_i \) and \(\lambda_i \in (0, 1) \) with \(y_i \in \lambda_i Fr(y_i) \); note \(Fr \) transforms relatively weakly compact sets into relatively weakly compact sets since \(r \) is weakly continuous and \(F \) transforms relatively weakly compact sets into relatively weakly compact sets and note also (see above) that \(Fr \) is a \(\psi \)-condensing map. Note since \(y_i \in \partial U_i \) that \(\lambda_i Fr(y_i) \not\subseteq Q \). We now consider

\[
D = \{ x \in X : x \in \lambda Fr(x), \text{ for some } \lambda \in [0, 1] \}.
\]

Note

\[
D \subseteq \overline{\psi}(Fr D \cup \{0\}) \subseteq \overline{\psi}(F \overline{\psi}(D \cup \{0\})) \cup \{0\}
\]

so if \(\psi(D) > 0 \) then since \(\psi(\overline{\psi}(D \cup \{0\})) = \psi(D) \) we have

\[
\psi(D) \leq \psi(\overline{\psi}(F \overline{\psi}(D \cup \{0\})) \cup \{0\})) = \psi(F(\overline{\psi}(D \cup \{0\}))) < \psi(\overline{\psi}(D \cup \{0\})) = \psi(D),
\]

a contradiction. Thus \(\psi(D) = 0 \) so \(D \) is relatively weakly compact. The reasoning above implies that \(D \) is weakly compact. Then, up to a subsequence, we may assume that \(\lambda_i \to \lambda^* \in [0, 1] \) and \(y_i \to y^* \in Q \). Since \(F \) has weakly sequentially closed graph then \(y^* \in \lambda^* Fr(y^*) \). Note \(\lambda^* \neq 1 \) since \(B \cap Q = \emptyset \). From assumption (ii) it follows that \(\lambda_j Fr(y_j) \subseteq Q \) for \(j \) sufficiently large, which is a contradiction. Thus \(B \cap Q \neq \emptyset \), so there exists \(x \in Q \) with \(x \in Fr(x) \), i.e. \(x \in Fr(x) \). \(\square \)
Remark 2.5. One of the conditions in Theorem 2.3 in [6] was stated incorrectly and the proof has to be adjusted slightly (i.e. modify slightly the proof of Theorem 2.4 above).

Next we establish an existence principle for the operator equation

\[(2.5) \quad y(t) \in N y(t), \quad t \in [0, T) \quad (T > 0 \text{ fixed})\]

in \(C([0, T], \mathbb{R}^n)\). Our result extends a result in [12, Theorem 3.9] and in [3, Theorem 2.8] (we note that one of the assumption in [12] was stated incorrectly). Recall \(W^{k,p}([0, T], \mathbb{R}^n), \quad 1 \leq p < \infty\), denotes the space of functions \(u : [0, T] \to \mathbb{R}^n\) with \(u^{(k-1)} \in AC[0, T]\) and \(u^{(k)} \in L^p[0, T]\). Note \(W^{k,p}([0, T], \mathbb{R}^n)\) is reflexive if \(1 < p < \infty\). Also we let \(\| \cdot \|_\infty\) denote the usual supremum norm and \(\| \cdot \|_2\) the usual \(L^2\) norm.

Theorem 2.6. Suppose \(N : W^{1,2}([0, T], \mathbb{R}^n) \to K(W^{1,2}([0, T], \mathbb{R}^n))\) has weakly sequentially closed graph; here \(K(W^{1,2}([0, T], \mathbb{R}^n))\) denotes the family of nonempty, convex, weakly closed subsets of \(W^{1,2}([0, T], \mathbb{R}^n)\). In addition assume the following two conditions hold:

\[(2.6) \quad \begin{cases} \exists M_0 > 0 \text{ such that if } u \in W^{1,2}([0, T], \mathbb{R}^n) \text{ satisfies} \\ \quad u \in \lambda Nu \text{ for } 0 < \lambda < 1, \quad \text{then } \|u\|_\infty \neq M_0 \end{cases}\]

and

\[(2.7) \quad \begin{cases} \exists N_0 \geq M_0, \text{ and } \exists N_1 > 0 \text{ such that if } u \in W^{1,2}([0, T], \mathbb{R}^n) \\ \quad \text{with } \|u\|_\infty \leq M_0 \text{ and } \|u'\|_2 \leq N_1, \quad \text{then } \|Nu\|_\infty \leq N_0 \quad \text{and } \|Nu\|_2 \leq N_1. \end{cases}\]

Then (2.5) has a solution in \(W^{1,2}([0, T], \mathbb{R}^n)\).

Proof. Let \(E = W^{1,2}([0, T], \mathbb{R}^n)\),

\(C = \{ u \in W^{1,2}([0, T], \mathbb{R}^n) : \|u\|_\infty \leq N_0 \text{ and } \|u'\|_2 \leq N_1 \}\)

and

\(U = \{ u \in W^{1,2}([0, T], \mathbb{R}^n) : \|u\|_\infty < M_0 \text{ and } \|u'\|_2 \leq N_1 \}\).

Notice \(C\) is a convex, closed, bounded subset of \(E\). We first show \(U\) is weakly open in \(C\). To do this we will show that \(C \setminus U\) is weakly closed. Let \(x \in \overline{C \setminus U}^w\). Then there exists \(x_n \in C \setminus U\) (see [7 pp. 81, 9 pp. 93]) with \(x_n \rightharpoonup x\) (here \(W^{1,2}([0, T], \mathbb{R}^n)\) is endowed with the weak topology and \(\rightharpoonup\) denotes weak convergence). We must show \(x \in C \setminus U\). Now since the embedding \(j : W^{1,2}([0, T], \mathbb{R}^n) \to C([0, T], \mathbb{R}^n)\) is completely continuous [1], there is a subsequence \(S\) of integers with

\(x_n \rightharpoonup x \text{ in } C([0, T], \mathbb{R}^n)\) and \(x'_n \rightharpoonup x'\) in \(L^2([0, T], \mathbb{R}^n)\)

as \(n \to \infty\) in \(S\). Also

\(\|x\|_\infty = \lim_{n \to \infty} \|x_n\|_\infty\) and \(\|x'\|_2 \leq \lim \inf \|x'_n\|_2 \leq N_1.\)
Note $M_0 \leq \|x\|_\infty \leq N_0$ since $M_0 \leq \|x_n\|_\infty \leq N_0$ for all n. As a result $x \in C \setminus U$, so $C \setminus U^w = C \setminus U$. Thus U is weakly open in C. Also

$$\partial U = \{u \in C : \|u\|_\infty = M_0\} \quad \text{and} \quad \overline{U^w} = \{u \in C : \|u\|_\infty \leq M_0\}.$$

To see this let $x \in \overline{U^w}$. Then [7 pp. 81] guarantees that there exists $x_n \in U$ with $x_n \rightharpoonup x$. Essentially the same reasoning as above yields $\|x\|_\infty \leq M_0$ and $\|x_n\|_p \leq N_1$, so $\overline{U^w} \subseteq \{u \in C : \|u\|_\infty \leq M_0\}$. On the other hand if $x \in A = \{u \in C : \|u\|_\infty \leq M_0\}$ (note A is closed), then there exists $x_n \in U$ with $x_n \rightharpoonup x$ in $W^{1,2}([0,T], \mathbb{R}^n)$, so in particular $x_n \rightarrow x$ in $W^{1,2}([0,T], \mathbb{R}^n)$. Thus $x \in \overline{U^w}$, so $\overline{U^w} = \{u \in C : \|u\|_\infty \leq M_0\}$.

Next note C is weakly compact (note $W^{1,2}([0,T], \mathbb{R}^n)$ is reflexive), (2.7) guarantees that $N : \overline{U^w} \rightarrow C(C)$ and N transforms relatively weakly sets into relatively weakly compact sets (note $N(\overline{U^w}) \subseteq C$ and C is weakly compact). Also (2.6) guarantees that (2.4) is not true (note if there exists $x \in \partial U$ and $\lambda \in (0,1)$ with $x \in \lambda N x$ then $\|x\|_\infty = M_0$ since $x \in \partial U$ and $\|x\|_\infty \neq M_0$ from (2.6)). Corollary 2.3 guarantees that N has a fixed point in $\overline{U^w}$.

Remark 2.7. In Theorem 2.6 it is enough to assume $N : \overline{U^w} \rightarrow K(C)$ has weakly sequentially closed graph; here U and C are as described in the proof.

Remark 2.8. Indeed it is clear that there is an analogue of Theorem 2.6 where $W^{1,2}([0,T], \mathbb{R}^n)$ is replaced by $W^{k,p}([0,T], \mathbb{R}^n)$, here $1 < p < \infty$.

REFERENCES

