NONLINEAR INTEGRAL EQUATIONS IN BANACH SPACES AND HENSTOCK-KURZWEIL-PETTIS INTEGRALS

ANETA SIKORSKA-NOWAK

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland (anetas@amu.edu.pl)

ABSTRACT. We prove an existence theorem for the nonlinear integral equation:

\[x(t) = f(t) + \int_0^t k_1(t,s)x(s)ds + \int_0^t k_2(t,s)g(s,x(s))ds, \quad t \in I_\alpha = [0, \alpha], \quad \alpha \in \mathbb{R}_+, \]

with the Henstock-Kurzweil-Pettis integrals. This integral equation can be considered as a nonlinear Fredholm equation expressed as a perturbed linear equation. The assumptions about the function \(g \) are really weak: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function \(g \) satisfies some conditions expressed in terms of the measure of weak noncompactness.

Key words: existence of solution, Henstock-Kurzweil integral, Pettis integral, Henstock-Kurzweil-Pettis integral, nonlinear Fredholm integral equation, measures of weak noncompactness

AMS (MOS) Subject Classification: 34G20, 28B05, 45D05

1. INTRODUCTION

The Henstock-Kurzweil integral encompasses the Newton, Riemann and Lebesgue integrals [15, 19, 25]. A particular feature of this integral is that integrals of highly oscillating functions such as \(F'(t) \), where \(F(t) = t^2 \sin t^{-2} \) on \((0, 1]\) and \(F(0) = 0 \) can be defined. This integral was introduced by Henstock and Kurzweil independently in 1957-58 and has since proved useful in the study of ordinary differential equations [4, 8, 23, 24, 31]. In the paper [7] S. S. Cao defined the Henstock integral in a Banach space, which is a generalization of the Bochner integral. The Pettis integral is also a generalization of the Bochner integral [30]. This notion is strictly relative to weak topologies in Banach spaces.

In [10], we generalized both concepts of integral introducing the Henstock-Kurzweil-Pettis integral.

Let \((E, \|\cdot\|)\) be a Banach space, \(E^*\)- its dual space and \(I_\alpha = [0, \alpha], \alpha \in \mathbb{R}_+\)
Moreover, let \((C(I_\alpha, E), \omega)\) denote the space of all continuous functions from \(I_\alpha\) to \(E\) endowed with the topology \(\sigma(C(I_\alpha, E), C(I_\alpha, E)^*))\). In this paper we will prove an
existence theorem for the integral equation:

\[
(1) \quad x(t) = f(t) + \int_0^\alpha k_1(t, s)x(s)ds + \int_0^\alpha k_2(t, s)g(s, x(s))ds,
\]

where \(g : I_\alpha \times E \to E \), \(f : I_\alpha \to E \), \(x : I_\alpha \to E \) are functions with values in \(E \), \(k_1, k_2 : I_\alpha \times I_\alpha \to \mathbb{R}_+ \) and the integrals are taken in the sense of Henstock-Kurzweil-Pettis [11].

Note that the previous integral equation can be considered as a nonlinear Fredholm equation expressed as a perturbed linear equation.

We should mention that an extensive work has been done in the study of the solutions of particular cases of (1) (see, for example, [1, 2, 3, 20, 21, 26, 28, 29]).

The main result presented in this paper generalizes the previous ones.

A Kubiaczyk fixed point theorem [22] and the techniques of the theory of measure of weak noncompactness are used to prove the existence of solution of problem (1). The assumptions about the function \(g \) are really-weak: scalar measurability and weak sequential continuity with respect to the second variable. By using these conditions, we define a completely continuous operator \(F \) over the Banach space \(C([0, \alpha]) \), whose fixed points are solutions of (1). The fixed point theorem of Kubiaczyk [22] is used to prove the existence of a fixed point of the operator \(F \).

Let us recall, that a function \(f : I_\alpha \to E \) is said to be weakly continuous if it is continuous from \(I_\alpha \) to \(E \) endowed with its weak topology. A function \(g : E \to E_1 \), where \(E \) and \(E_1 \) are Banach spaces, is said to be weakly-weakly sequentially continuous if for each weakly convergent sequence \((x_n) \) in \(E \), the sequence \((g(x_n)) \) is weakly convergent in \(E_1 \). When the sequence \(x_n \) tends weakly to \(x_0 \) in \(E \), we will write \(x_n \overset{\omega}{\to} x_0 \).

Our fundamental tool is the measure of weak noncompactness developed by De-Blasi [6].

Let \(A \) be a bounded nonempty subset of \(E \). The measure of weak noncompactness \(\mu(A) \) is defined by

\[
\mu(A) = \inf\{t > 0 : \text{there exists } C \in K^\omega \text{ such that } A \subset C + tB_0\},
\]

where \(K^\omega \) is the set of weakly compact subsets of \(E \) and \(B_0 \) is the norm unit ball in \(E \).

We will use the following properties of the measure of weak noncompactness \(\mu \) (for bounded nonempty subsets \(A \) and \(B \) of \(E \)):

(i) if \(A \subset B \), then \(\mu(A) \leq \mu(B) \);
(ii) \(\mu(A) = \mu(\bar{A}) \), where \(\bar{A} \) denotes the closure of \(A \);
(iii) \(\mu(A) = 0 \) if and only if \(A \) is relatively weakly compact;
(iv) \(\mu(A \cup B) = \max \{\mu(A), \mu(B)\} \);
(v) \(\mu(\lambda A) = |\lambda|\mu(A) \), (\(\lambda \in \mathbb{R} \));
(vi) \(\mu(A + B) \leq \mu(A) + \mu(B) \);
(vii) \(\mu(\text{conv} A) = \mu(A) \).

It is necessary to remark that if \(\mu \) has these properties, then the following Lemma is true.

Lemma 1.1 [27]. Let \(H \subset C(I_\alpha, E) \) be a family of strongly equicontinuous functions. Let, for \(t \in I_\alpha \), \(H(t) = \{h(t) \in E, \ h \in H\} \). Then \(\beta(H(I_\alpha)) = \sup_{t \in I_\alpha} \beta(H(t)) \) and the function \(t \mapsto \beta(H(t)) \) is continuous.

In the proof of the main result we will apply the following fixed point theorem.

Theorem 1.2 [22]. Let \(X \) be a metrizable locally convex topological vector space. Let \(D \) be a closed convex subset of \(X \), and let \(F \) be a weakly sequentially continuous map from \(D \) into itself. If for some \(x \in D \) the implication

\[
\nabla = \overline{\text{conv}}(\{x\} \cup F(V)) \Rightarrow V \text{ is relatively weakly compact},
\]

holds for every subset \(V \) of \(D \), where \(\overline{\text{conv}}(\{x\} \cup F(V)) \) denotes the closure of the convex of \(\{x\} \cup F(V) \), then \(F \) has a fixed point.

Let us introduce the following definitions:

Definition 1.3 [30]. Let \(G : [a, b] \to E \) and let \(A \subset [a, b] \). The function \(g : A \to E \) is a pseudoderivative of \(G \) on \(A \) if for each \(x^* \) in \(E^* \) the real-valued function \(x^*G \) is differentiable almost everywhere on \(A \) and \((x^*G)' = x^*g \) almost everywhere on \(A \).

Definition 1.4 [15, 25]. A family \(\mathcal{F} \) of functions \(F \) is said to be uniformly absolutely continuous in the restricted sense on \(X \) or, in short, uniformly AC\(s \) on \(X \) if for every \(\varepsilon > 0 \) there is \(\eta > 0 \) such that for every \(F \) in \(\mathcal{F} \) and for every finite or infinite sequence of non-overlapping intervals \(\{[a_i, b_i]\} \) with \(a_i, b_i \in X \) and satisfying \(\sum |b_i - a_i| < \eta \), we have \(\sum \omega(F, [a_i, b_i]) < \varepsilon \), where \(\omega(F, [a_i, b_i]) \) denotes the oscillation of \(F \) over \([a_i, b_i] \) (i.e. \(\omega(F, [a_i, b_i]) = \sup \{|F(r) - F(s)| : r, s \in [a_i, b_i]\} \)).

A family \(F \) of functions \(F \) is said to be uniformly generalized absolutely continuous in the restricted sense on \([a, b] \) or uniformly ACG\(s \) on \([a, b] \) if \([a, b] \) is the union of a sequence of closed sets \(A_i \) such that on each \(A_i \), the family \(F \) is uniformly AC\(s \) \((A_i)\).

2. HENSTOCK-KURZWEIL-PETTIS INTEGRAL IN BANACH SPACES

In this part we present the Henstock-Kurzweil-Pettis integral and we give properties of this integral.

Definition 2.1 [15, 25]. Let \(\delta \) be a positive function defined on the interval \([a, b] \).
A tagged interval \((x, [c, d]) \) consists of an interval \([c, d] \subseteq [a, b] \) and a point \(x \in [c, d] \).

The tagged interval \((x, [c, d]) \) is subordinate to \(\delta \) if \([c, d] \subseteq (x - \delta(x), x + \delta(x)) \).
Let \(P = \{(s_i, [c_i, d_i]) : 1 \leq i \leq n, \ n \in \mathbb{N}\} \) be such a collection in \([a, b]\). Then
(i) The points \(\{ s_i : 1 \leq i \leq n \} \) are called the tags of \(P \).
(ii) The intervals \(\{ [c_i, d_i] : 1 \leq i \leq n \} \) are called the intervals of \(P \).
(iii) If \(\{(s_i, [c_i, d_i]) : 1 \leq i \leq n \} \) is subordinate to \(\delta \) for each \(i \), then we write \(P \) is sub
\(\delta \).
(iv) If \([a, b] = \bigcup_{i=1}^{n} [c_i, d_i] \), then \(P \) is called a tagged partition of \([a, b] \).
(v) If \(P \) is a tagged partition of \([a, b] \) and if \(P \) is sub \(\delta \), then we write \(P \) is sub \(\delta \) on
\([a, b] \).
(vi) If \(f : [a, b] \to E \), then \(f(P) = \sum_{i=1}^{n} f(s_i)(d_i - c_i) \).
(vii) If \(F \) is defined on the subintervals of \([a, b] \), then \(F(P) = \sum_{i=1}^{n} F([c_i, d_i]) =
\sum_{i=1}^{n} [F(d_i) - F(c_i)] \).

If \(F : [a, b] \to E \), then \(F \) can be treated as a function of intervals by defining
\(F([c, d]) = F(d) - F(c) \). For such a function, \(F(P) = F(b) - F(a) \) if \(P \) is a tagged
partition of \([a, b] \).

Definition 2.2 [15, 25]. A function \(f : [a, b] \to R \) is *Henstock-Kurzweil integrable on \([a, b] \)* if there exists a real number \(L \) with the following property: for each \(\varepsilon > 0 \) there exists a positive function \(\delta \) on \([a, b] \) such that \(|f(P) - L| < \varepsilon \) whenever \(P \) is a
tagged partition of \([a, b] \) that is subordinate to \(\delta \).

The function \(f \) is *Henstock-Kurzweil integrable on a measurable set \(A \subset [a, b] \)* if \(f_{\chi_A} \) is Henstock-Kurzweil integrable on \([a, b] \). The number \(L \) in Definition 2.2 is called the *Henstock-Kurzweil integral of \(f \)* and we will denote it by \(\int_{a}^{b} f(t) \, dt \).

Definition 2.3 [7]. A function \(f : [a, b] \to E \) is *Henstock-Kurzweil integrable on \([a, b] \) \((f \in HK([a, b], E)) \) if there exists a vector \(z \in E \) with the following property: for every \(\varepsilon > 0 \) there exists a positive function \(\delta \) on \([a, b] \) such that \(\|f(P) - z\| < \varepsilon \) whenever \(P \) is a tagged partition of \([a, b] \) sub \(\delta \). The function \(f \) is Henstock-Kurzweil integrable on a measurable set \(A \subset [a, b] \) if \(f_{\chi_A} \) is Henstock-Kurzweil integrable on
\([a, b] \). The vector \(z \) is the *Henstock-Kurzweil integral of \(f \).*

We remark that this definition includes the generalized Riemann integral defined by Gordon [16]. In a special case, when \(\delta \) is a constant function, we get the Riemann integral.

Definition 2.4 [7]. A function \(f : [a, b] \to E \) is *HL integrable on \([a, b] \) \((f \in HL([a, b], E)) \) if there exists a function \(F : [a, b] \to E \), defined on the subintervals of
\([a, b] \), satisfying the following property: given \(\varepsilon > 0 \) there exists a positive function \(\delta \) on
\([a, b] \) such that if \(P = \{(s_i, [c_i, d_i]) : 1 \leq i \leq n \} \) is a tagged partition of \([a, b] \) sub \(\delta \), then
\[\sum_{i=1}^{n} \|f(s_i)(d_i - c_i) - F([c_i, d_i])\| < \varepsilon. \]
Remark 1. We note that by triangle inequality:

\[f \in HL([a, b], E) \quad \text{implies} \quad f \in HK([a, b], E). \]

In general, the converse is not true. For real-valued functions, the two integrals are equivalent.

Definition 2.5 [30]. The function \(f : I_\alpha \to E \) is **Pettis integrable** (P integrable for short) if

(i) \(\forall x^* \in E^* \quad x^* f \) is Lebesgue integrable on \(I_\alpha \),
(ii) \(\forall A \subseteq I_\alpha, \text{A-measurable} \exists g \in E \ \forall x^* \in E^* \ x^* g = \left(L \right) \int_A x^* f(s)ds, \)

where \((L) \int_A x^* f(s)ds \) denotes the Lebesgue integral over \(A \).

Now we present a definition of an integral which is a generalization for both: Pettis and Henstock-Kurzweil integrals.

Definition 2.6 [11]. The function \(f : I_\alpha \to E \) is **Henstock-Kurzweil-Pettis integrable** (HKP integrable for short) if there exists a function \(g : I_\alpha \to E \) with the following properties:

(i) \(\forall x^* \in E^* \quad x^* f \) is Henstock-Kurzweil integrable on \(I_\alpha \) and
(ii) \(\forall t \in I_\alpha, \forall x^* \in E^* \ x^* g(t) = \left(HK \right) \int_0^t x^* f(s)ds. \)

This function \(g \) will be called a **primitive of** \(f \) and by \(g(\alpha) = \int_0^\alpha f(t)dt \) we will denote the **Henstock-Kurzweil-Pettis integral** of \(f \) on the interval \(I_\alpha \).

Remark 2. Each function which is HL integrable is integrable in the sense of Henstock-Kurzweil-Pettis. Our notion of integral is essentially more general than the previous ones (in Banach spaces):

(i) Pettis integral: by the definition of the Pettis integral and since each Lebesgue integrable function is HK integrable, a P integrable function is clearly HKP integrable.
(ii) Bochner, Riemann, and Riemann-Pettis integrals [16].
(iii) MsShane integral [14] or [17].
(iv) Henstock-Kurzweil (HL) integral ([7]).

We present below an example of a function which is HKP integrable but neither HL integrable nor P integrable.

Example. Let \(f : [0, 1] \to (L^\infty[0, 1], \| \cdot \|_\infty) \) be defined as \(f(t) = \chi_{[0,t]} + A(t) \cdot F'(t) \), where

\[
F(t) = t^2 \sin t^{-2}, \quad t \in (0, 1], \quad F(0) = 0, \quad \chi_{[0,t]}(\tau) = \begin{cases}
1, & \tau \in [0, t], \\
0, & \tau \notin [0, t],
\end{cases} \quad t, \tau \in [0, 1],
\]

\(A(t)(\tau) = 1 \) for \(\tau, t \in [0, 1] \).
Put \(f_1(t) = \chi_{[0,t]} \), \(f_2(t) = A(t) \cdot F'(t) \).

We will show that the function \(f(t) = f_1(t) + f_2(t) \) is integrable in the sense of Henstock-Kurzweil-Pettis.

Observe that
\[
x^*(f(t)) = x^*(f_1(t) + f_2(t)) = x^*(f_1(t)) + x^*(f_2(t)).
\]
Moreover, the function \(x^*(f_1(t)) \) is Lebesgue integrable (in fact \(f_1 \) is Pettis integrable \([13]\)), so it is Henstock-Kurzweil integrable, and the function \(x^*(f_2(t)) \) is Henstock-Kurzweil integrable by Definition 2.2.

For each \(x^* \in E^* \) the function \(x^*f \) is not Lebesgue integrable because \(x^*f_2 \) is not Lebesgue integrable. So \(f \) is not Pettis integrable. Moreover, the function \(f_1 \) is not strongly measurable \([13]\) and the function \(f_2 \) is strongly measurable. So their sum \(f \) is not strongly measurable. Then by Theorem 9 from \([7]\) \(f \) is not HL integrable.

In this sequel we present some properties of the HKP integral which are important in the next part of our paper.

Theorem 2.7 \([11]\). Let \(f : [a, b] \to E \) be HKP integrable on \([a, b]\) and let \(F(x) = \int_a^x f(s)ds, \ x \in [a, b]. \) Then

(i) for each \(x^* \in E^* \) the function \(x^*f \) is HK integrable on \([a, b]\) and
\[
(HK) \int_a^x x^*(f(s))ds = x^*(F(x))
\]
(ii) the function \(F \) is weakly continuous on \([a, b]\) and \(f \) is a pseudoderivative of \(F \) on \([a, b]\).

Theorem 2.8 \([11]\). Let \(f : [a, b] \to E. \) If \(f = 0 \) almost everywhere on \([a, b]\), then \(f \) is HKP integrable on \([a, b]\) and \(\int_a^b f(t)dt = 0. \)

Theorem 2.9 \([11]\) (Mean value theorem for the HKP integral). If the function \(f : I_a \to E \) is HKP integrable, then
\[
\int_I f(t)dt \in |I| \cdot \text{conv} f(I),
\]
where \(\text{conv} f(I) \) is the closure of the convex of \(f(I) \), \(I \) is an arbitrary subinterval of \(I_a \) and \(|I| \) is the length of \(I \).

Theorem 2.10 \([9]\). Let \(f : I_a \to E \) and assume that \(f_n : I_a \to E, n \in N, \) are HKP integrable on \(I_a \). For each \(n \in N, \) let \(F_n \) be a primitive of \(f_n \). If we assume that:

(i) \(\forall x^* \in E^* \) \(x^*(f_n(t)) \to x^*(f(t)) \) a.e. on \(I_a, \)
(ii) for each \(x^* \in E^* \), the family \(G = \{ x^*F_n : n = 1, 2, \ldots \} \) is uniformly ACG on \(I_a \) (i.e. weakly uniformly ACG on \(I_a \)),
(iii) for each \(x^* \in E^* \), the set \(G \) is equicontinuous on \(I_a, \)
then f is HKP integrable on I_α and $\int_0^t f(s)ds$ tends weakly in E to $\int_0^t f(s)ds$ for each $t \in I_\alpha$.

3. EXISTENCE OF A SOLUTION

Now we prove the existence theorem for problem (1) under the weakest assumptions on g, as it is known.

For $x \in C(I_\alpha, E)$, we define the norm of x by: $\|x\|_C = \sup \{ \|x(t)\|, \ t \in I_\alpha \}$.

Put $B = \{x \in C(I_\alpha, E) : x(0) = f(0), \ \|x\| \leq \|f(\cdot)\| + M, \ M > 0 \}$.

We define the operator $F : C(I_\alpha, E) \to C(I_\alpha, E)$ by

$$ F(x)(t) = f(t) + \int_0^\alpha k_1(t, s)x(s)ds + \int_0^\alpha k_2(t, s)g(s, x(s))ds, \ t \in I_\alpha, \ \alpha \in R_+, \ x \in B, $$

where integrals are taken in the sense of Henstock-Kurzweil-Pettis.

Moreover, let $\Gamma = \{F(x) \in C(I_\alpha, E) : x \in B\}$ and let $r(K)$ be the spectral radius of the integral operator K defined by

$$ K(u)(t) = \int_0^\alpha [k_1(t, s) + k_2(t, s)]u(s)ds, \ t \in I_\alpha, \ u \in B. $$

Now we present the existence theorem for problem (1).

A continuous function $x : I_\alpha \to E$ is said to be a solution of problem (1) if it satisfies the equation (1) for every $t \in I_\alpha$.

Theorem 3.1 Assume that for each continuous function $x : I_\alpha \to E$, $g(\cdot, x(\cdot))$ is HKP integrable, $g(s, \cdot)$ is weakly-weakly sequentially continuous and $k_1, k_2 : I_\alpha \times I_\alpha \to R_+$ are measurable functions such that $k_1(t, \cdot), k_2(t, \cdot)$ are continuous. Moreover, let $L > 0$ and

$$ (3) \quad \mu(g(I, X)) \leq L\mu(X) \quad \text{for each bounded subset} \ X \subset E, I \subset I_\alpha. $$

Suppose that Γ is equicontinuous and uniformly ACG_* on I_α. Moreover, let $(1 + L)r(K) < 1$. Then there exists at least one solution of problem (1) on I_β, for some $0 < \beta \leq \alpha$, with continuous initial function f.

Proof. By equicontinuity of Γ there exists some number β ($0 < \beta \leq \alpha$) such that

$$ \| \int_0^\beta [k_1(t, s)x(s) + k_2(t, s)g(s, x(s))]ds \| \leq M \quad \text{for fixed} \ M > 0, \ t \in I_\beta \ \text{and} \ x \in B. $$

By our assumptions, the operator F is well defined and maps B into B. We will show that the operator F is weakly sequentially continuous.

By Lemma 9 of [27], a sequence $x_n(\cdot)$ is weakly convergent in $C(I_\beta, E)$ to $x(\cdot)$ if and only if $x_n(t)$ tends weakly to $x(t)$ for each $t \in I_\beta$. Because $g(s, \cdot)$ is weakly-weakly
sequentially continuous, so if \(x_n \xrightarrow{\omega} x \) in \((C(I_\beta, E), \omega)\) then \(g(s, x_n(s)) \xrightarrow{\omega} g(s, x(s)) \) in \(E \) for \(t \in I_\beta \) and by Theorem 2.10 we have
\[
\lim_{n \to \infty} \int_{0}^{\beta} [k_1(t, s)x_n(s) + k_2(t, s)g(s, x_n(s))]ds = \int_{0}^{\beta} [k_1(t, s)x(s) + k_2(t, s)g(s, x(s))]ds
\]
weakly in \(E \), for each \(t \in I_\beta \). We see that \(F(x_n)(t) \to F(x)(t) \) weakly in \(E \) for each \(t \in I_\beta \) so \(F(x_n) \to F(x) \) in \((C(I_\beta, E), \omega)\).

Suppose that \(V \subset B \) satisfies the condition \(\bar{V} = \overline{\text{conv}(\{x\} \cup F(V))} \), for some \(x \in B \). We will prove that \(V \) is relatively weakly compact, thus (2) is satisfied.

Let, for \(t \in I_\beta \), \(V(t) = \{v(t) \in E : v \in V\} \).

From the definition of \(B \) and Lemma 1.1, it follows that the function \(v : t \mapsto \mu(V(t)) \) is continuous on \(I_\beta \).

We divide the interval \(I_\beta : 0 = t_0 < t_1 < \cdots < t_m = \beta \), where \(t_i = \frac{i\beta}{m} \), \(i = 0, 1, \ldots, m \). Let \(V([t_i, t_{i+1}]) = \{u(s) \in E : u \in V, t_i \leq s \leq t_{i+1}\} \), \(i = 0, 1, \ldots, m - 1 \). By Lemma 1.1 and the continuity of \(v \) there exists \(s_i \in T_i = [t_i, t_{i+1}] \) such that
\[
\mu(V([t_i, t_{i+1}])) = \sup\{\mu(V(s)) : t_i \leq s \leq t_{i+1}\} =: v(s_i).
\]

On the other hand, by the definition of the operator \(F \) and Theorem 2.11 we have
\[
F(u)(t) = f(t) + \sum_{i=0}^{m-1} \int_{t_i}^{t_{i+1}} [k_1(t, s)u(s) + k_2(t, s)g(s, u(s))]ds
\]
\[
\in f(t) + \sum_{i=0}^{m-1} (t_{i+1} - t_i)\overline{\text{conv}}[k_1(t, T_i)V([t_i, t_{i+1}]) + k_2(t, T_i)g(T_i, V([t_i, t_{i+1}])])
\]
for each \(u \in V \).

Therefore
\[
F(V(t)) \subset f(t) + \sum_{i=0}^{m-1} (t_{i+1} - t_i)\overline{\text{conv}}[k_1(t, T_i)V([t_i, t_{i+1}]) + k_2(t, T_i)g(T_i, V([t_i, t_{i+1}])])
\]

Using (3), (4) and the properties of the measure of weak noncompactness \(\mu \) we obtain
\[
\mu(F(V(t))) \leq \sum_{i=0}^{m-1} (t_{i+1} - t_i)k_1(t, T_i)\mu(V([t_i, t_{i+1}])
\]
\[
+ \sum_{i=0}^{m-1} (t_{i+1} - t_i)[k_2(t, T_i)\mu(g(T_i, V([t_i, t_{i+1}])))]
\]
\[
\leq \sum_{i=0}^{m-1} (t_{i+1} - t_i)[k_1(t, T_i)v(s_i) + k_2(t, T_i)Lv(s_i)]
\]
\[
= \sum_{i=0}^{m-1} (t_{i+1} - t_i)k_1(t, T_i)v(s_i) + L \sum_{i=0}^{m-1} (t_{i+1} - t_i)k_2(t, T_i)v(s_i)
\]
Therefore
\[
\leq \sum_{i=0}^{m-1} (t_{i+1} - t_i) \sup_{s \in T_i} k_1(t, s)v(s) + L \sum_{i=0}^{m-1} (t_{i+1} - t_i) \sup_{s \in T_i} k_2(t, s)v(s)
\]
\[
= \sum_{i=0}^{m-1} (t_{i+1} - t_i) k_1(t, p_i)v(s_i) + L \sum_{i=0}^{m-1} (t_{i+1} - t_i) k_2(t, q_i)v(s_i),
\]

where \(s_i, p_i, q_i \in T_i\), hence
\[
\mu(F(V(t))) \leq \sum_{i=0}^{m-1} (t_{i+1} - t_i) k_1(t, p_i)v(p_i) + \sum_{i=0}^{m-1} (t_{i+1} - t_i)[k_1(t, p_i)(v(s) - v(p_i))]
\]
\[
+ L \sum_{i=0}^{m-1} (t_{i+1} - t_i) k_2(t, q_i)v(q_i)
\]
\[
+ L \sum_{i=0}^{m-1} (t_{i+1} - t_i)[k_2(t, q_i)(v(s) - v(q_i))]
\]
\[
= \sum_{i=0}^{m-1} (t_{i+1} - t_i) k_1(t, p_i)v(p_i) + \frac{\beta}{m} \sum_{i=0}^{m-1} [k_1(t, p_i)(v(s) - v(p_i))]
\]
\[
+ L \sum_{i=0}^{m-1} (t_{i+1} - t_i) k_2(t, q_i)v(q_i) + \frac{L \beta}{m} \sum_{i=0}^{m-1} [k_2(t, q_i)(v(s) - v(q_i))].
\]

By the continuity of \(v\) we have \(v(s_i) - v(p_i) < \varepsilon_1\) and \(\varepsilon_1 \to 0\) as \(m \to \infty\) and \(v(s_i) - v(q_i) < \varepsilon_2\) and \(\varepsilon_2 \to 0\) as \(m \to \infty\).

So
\[
\mu(F(V(t))) < \frac{\beta}{\int_0^\beta k_1(t, s)v(s)ds + \beta \sup_{p \in I_\beta} k_1(t, p) \varepsilon_1}
\]
\[
+ L \int_0^\beta k_2(t, s)v(s)ds + \frac{L \beta}{\int_0^\beta k_2(t, q)v(s)ds, \quad \text{for } \beta \in I_\beta}
\]

Therefore
\[
(5) \quad \mu(F(V(t))) \leq (1 + L) \int_0^\beta [k_1(t, s) + k_2(t, s)]v(s)ds, \quad \text{for } t \in I_\beta.
\]

Since \(V = \overline{\text{conv}}(\{u\} \cup F(V))\), by the property of the measure of weak noncompactness we have \(\mu(V(t)) \leq \mu(F(V(t)))\) and so in view of (5), it follows that \(\mu(t) \leq (1 + L) \int_0^\beta [k_1(t, s) + k_2(t, s)]v(s)ds, \quad \text{for } t \in I_\beta\). Because this inequality holds for every \(t \in I_\beta\) and \((1 + L)r(K) < 1\), so by applying Gronwall’s inequality [18], we conclude that \(\mu(V(t)) = 0\), for \(t \in I_\beta\). Hence Arzela-Ascoli’s theorem implies that the set \(V\) is relatively compact. Consequently, by Theorem 1.2, \(F\) has a fixed point which is a solution of the problem (1).
Remark 3. The condition (3) in our Theorem 3.1 can be also generalized to the Sadovskii conditions: $\mu(F(I \times X)) < \mu(X)$, whenever $\mu(X) > 0$, where μ can be replaced by some axiomatic measure of weak noncompactness.

Acknowledgment: I'm grateful to the referee’s valuable suggestions.

REFERENCES