SOLUTIONS AND POSITIVE SOLUTIONS TO SEMIPOSITONE DIRICHLET BVPS ON TIME SCALES

JIAN-PING SUN AND WAN-TONG LI

Department of Mathematics, Lanzhou City University, Lanzhou, Gansu, 730070,
People's Republic of China

jpsun@lut.cn

School of Mathematics and Statistics, Lanzhou University

Lanzhou, Gansu, 730000, People's Republic of China

ABSTRACT. In this paper, we are concerned with the following Dirichlet boundary value problem on a time scale

\[
-u^\Delta(t) = g(t, u(t)), \quad t \in [0, T]_T,
\]

\[
u(0) = 0 = u(\sigma^2(T)),
\]

where \(g : [0, T]_T \times [-\sigma(T)\sigma^2(T)M, +\infty) \to [-M, +\infty) \) is continuous and \(M > 0 \) is a constant, which implies that this problem is semipositone. For an arbitrary positive integer \(n \), some existence results for \(n \) solutions and/or positive solutions are established by using the well-known Guo-Krasnosel'skii fixed point theorem. Our conditions imposed on \(g \) are local. An example is also included to illustrate the importance of the results obtained.

AMS (MOS) Subject Classification. 34B15, 39A10.

1. INTRODUCTION

Let \(T \) be a time scale (arbitrary nonempty closed subset of the real numbers \(\mathbb{R} \)). For each interval \(I \) of \(\mathbb{R} \), we denote by \(I_T = I \cap T \). For more details on time scales, one can refer to [1, 3, 7, 8]. In this paper, we consider solutions and positive solutions to the nonlinear Dirichlet boundary value problem (BVP for short) on a time scale \(T \)

\[
\begin{cases}
-u^\Delta(t) = g(t, u(t)), & t \in [0, T]_T, \\
u(0) = 0 = u(\sigma^2(T)),
\end{cases}
\]

where \(T > 0 \) is fixed and \(0, T \in T \). Here, the solution \(u \) of the BVP (1.1) is called positive if \(u(t) > 0, \ t \in (0, \sigma^2(T))_T \). Throughout this paper, we assume that \(g : [0, T]_T \times [-\sigma(T)\sigma^2(T)M, +\infty) \to [-M, +\infty) \) is continuous and \(M > 0 \) is a constant; this implies that the BVP (1.1) is semipositone.

The BVP (1.1) has been discussed extensively when \(M = 0 \) (i.e., positone problem); see [2, 4, 5, 10] and the references therein. Recently, by using fixed point index theory, we [12] established some existence criteria for at least one positive solution to the BVP (1.1) assuming \(M > 0 \) (i.e., semipositone problem) and global conditions
on \(g \) (that is to say, these conditions are concerned with the growth of \(g \) on its whole domain). This paper is a continuation of our study in \([12]\). Our results show that the BVP (1.1) has at least \(n \) solutions and/or positive solutions provided that the “heights” of \(g \) on some bounded sets of its domain are appropriate, i.e., such existence results do not concern the growth of \(g \) outside these bounded sets. In other words, our conditions imposed on \(g \) are local. Our main idea comes from \([9, 13, 14]\), and our main tool is the well-known Guo-Krasnosel’skii fixed point theorem, which we state here for the convenience of the reader.

Theorem 1.1 ([6]). Let \(X \) be a Banach space and \(K \) be a cone in \(X \). Assume that \(\Omega_1 \) and \(\Omega_2 \) are bounded open subsets of \(X \) with \(0 \in \Omega_1 \), \(\overline{\Omega_1} \subset \Omega_2 \), and let \(\Phi : K \cap (\Omega_2 \setminus \Omega_1) \to K \) be a completely continuous operator such that either

\[
(i) \quad \|\Phi u\| \leq \|u\|, \ \forall u \in K \cap \partial \Omega_1 \quad \text{and} \quad \|\Phi u\| \geq \|u\|, \ \forall u \in K \cap \partial \Omega_2,
\]

or

\[
(ii) \quad \|\Phi u\| \geq \|u\|, \ \forall u \in K \cap \partial \Omega_1 \quad \text{and} \quad \|\Phi u\| \leq \|u\|, \ \forall u \in K \cap \partial \Omega_2.
\]

Then \(\Phi \) has a fixed point in \(K \cap (\Omega_2 \setminus \Omega_1) \).

2. MAIN RESULTS

Let

\[
X = \{ u \mid u : [0, \sigma^2(T)]_T \to \mathbb{R} \text{ is continuous} \}
\]

be equipped with the norm

\[
\|u\| = \max_{t \in [0, \sigma^2(T)]_T} |u(t)|.
\]

Then, \(X \) is a Banach space.

Define

\[
K = \{ u \in X \mid u(t) \geq q(t) \|u\|, \ t \in [0, \sigma^2(T)]_T \},
\]

where \(q(t) = \frac{t(\sigma^2(T)-t)}{(\sigma^2(T))^2}, \ t \in [0, \sigma^2(T)]_T \). Then, it is easy to see that \(K \) is a cone of \(X \).

To obtain a solution of the BVP (1.1), we require a mapping whose kernel \(G(t,s) \) is the Green’s function of the BVP

\[
(2.1) \quad \begin{cases}
-u^{\Delta\Delta}(t) = 0, \ t \in [0, T]_T, \\
u(0) = 0 = u(\sigma^2(T)).
\end{cases}
\]

It is known that [3]

\[
(2.2) \quad G(t,s) = \frac{1}{\sigma^2(T)} \begin{cases}
t(\sigma^2(T) - \sigma(s)), \ t \leq s, \\
\sigma(s)(\sigma^2(T) - t), \ t \geq \sigma(s).
\end{cases}
\]

For \(G(t,s) \), we have the following simple but important lemma.
Lemma 2.1. For any \(t \in [0, \sigma^2(T)]_T \) and \(s \in [0, \sigma(T)]_T \),
\begin{equation}
0 \leq G(t, s) \leq \frac{t (\sigma^2(T) - t)}{\sigma^2(T)}.
\end{equation}

Lemma 2.2. Let \(p(t) \) be the solution of the BVP
\begin{equation}
\begin{cases}
-p^\Delta(t) = 1, & t \in [0, T]_T, \\
p(0) = 0 = p(\sigma^2(T)).
\end{cases}
\end{equation}
Then,
\begin{equation}
0 \leq p(t) \leq q(t)\sigma(T)\sigma^2(T), \ t \in [0, \sigma^2(T)]_T.
\end{equation}
In particular,
\begin{equation}
0 \leq p(t) \leq \sigma(T)\sigma^2(T), \ t \in [0, \sigma^2(T)]_T.
\end{equation}

Proof. Since \(p(t) \) is the solution of the BVP (2.4), we know that
\begin{equation}
p(t) = \int_0^{\sigma(T)} G(t, s) \Delta s, \ t \in [0, \sigma^2(T)]_T.
\end{equation}
In view of Lemma 2.1, we have
\begin{equation}
0 \leq p(t) = \int_0^{\sigma(T)} G(t, s) \Delta s \leq \frac{t (\sigma^2(T) - t) \sigma(T)}{\sigma^2(T)} = q(t)\sigma(T)\sigma^2(T), \ t \in [0, \sigma^2(T)]_T.
\end{equation}

Let \(u_0(t) = Mp(t) \), \(t \in [0, \sigma^2(T)]_T \). We consider the following BVP
\begin{equation}
\begin{cases}
-u^\Delta(t) = g(t, u(t) - u_0(t)) + M, & t \in [0, T]_T, \\
u(0) = 0 = u(\sigma^2(T)).
\end{cases}
\end{equation}
It is easy to verify that if \(u(t) \) is a solution of the BVP (2.7), then \(u(t) - u_0(t) \) is a solution of the BVP (1.1). So, we will focus our attention on the BVP (2.7).

Since the BVP (2.7) is equivalent to the integral equation
\begin{equation}
u(t) = \int_0^{\sigma(T)} G(t, s)[g(s, u(s) - u_0(s)) + M] \Delta s, \ t \in [0, \sigma^2(T)]_T,
\end{equation}
we define the operator \(\Phi : K \to X \) as follows
\begin{equation}(\Phi u)(t) = \int_0^{\sigma(T)} G(t, s)[g(s, u(s) - u_0(s)) + M] \Delta s, \ t \in [0, \sigma^2(T)]_T.
\end{equation}
Noticing that
\begin{equation}
-\sigma(T)\sigma^2(T)M \leq u(t) - u_0(t) < +\infty \text{ for } u \in K \text{ and } t \in [0, \sigma^2(T)]_T,
\end{equation}
we know that \(\Phi : K \to X \) is well-defined.

Lemma 2.3. \(\Phi : K \to K \) is completely continuous.
Proof. Let \(u \in K \). By the definition of \(\Phi \), we know that \((\Phi u)(0) = 0 = (\Phi u)(\sigma^2(T)) \). So, there exists a \(t_0 \in (0, \sigma^2(T))_T \) such that \(\|\Phi u\| = (\Phi u)(t_0) \). Since

\[
G(t, s) = \begin{cases}
\frac{t}{t_0}, & t,
\frac{(\sigma^2(T) - \sigma(s))}{\sigma(s)(\sigma^2(T) - t_0)}, & t \leq s < t_0, \\
\frac{\sigma(s)(\sigma^2(T) - t)}{t_0(\sigma^2(T) - \sigma(s))}, & t_0 \leq s < t, \\
\frac{\sigma^2(T) - t}{\sigma(T) - t_0}, & t,
\end{cases}
\]

we obtain that

\[
(2.11) \quad \frac{G(t, s)}{G(t_0, s)} \geq q(t), \quad t \in [0, \sigma^2(T)]_T \text{ and } s \in [0, \sigma(T)]_T.
\]

So,

\[
(\Phi u)(t) = \int_0^{\sigma(T)} G(t, s)[g(s, u(s) - u_0(s)) + M] \Delta s
\]

\[
= \int_0^{\sigma(T)} \frac{G(t, s)}{G(t_0, s)} G(t_0, s)[g(s, u(s) - u_0(s)) + M] \Delta s
\]

\[
\geq q(t) \int_0^{\sigma(T)} G(t_0, s)[g(s, u(s) - u_0(s)) + M] \Delta s
\]

\[
= q(t)(\Phi u)(t_0)
\]

\[
= q(t)\|\Phi u\|, \quad t \in [0, \sigma^2(T)]_T,
\]

which shows that \(\Phi u \in K \). Furthermore, by using similar arguments to those in [11], we can prove that \(\Phi : K \to K \) is completely continuous. \(\square \)

In the remainder of this paper, we let \(\xi, \eta \in T \) be such that \(0 < \xi < \eta < T \) and denote

\[
A = \left[\max_{t \in [0, \sigma^2(T)]_T} \int_0^{\sigma(T)} G(t, s) \Delta s \right]^{-1},
\]

\[
B = \left[\max_{t \in [0, \sigma^2(T)]_T} \int_{\xi}^{\eta} G(t, s) \Delta s \right]^{-1},
\]

\[
\varphi(r) = \max \{ g(t, u) + M \mid t \in [0, T]_T, \ u \in [-\sigma(T)\sigma^2(T)M, r] \}
\]

and

\[
\psi(r) = \min \left\{ g(t, u) + M \mid t \in [\xi, \eta]_T, \ u \in \left[\frac{\xi(\sigma^2(T) - \eta)r}{(\sigma^2(T))^2} - \sigma(T)\sigma^2(T)M, r \right] \right\}.
\]

It is obvious that \(0 < A < B \).

Now, we state and prove a basic existence criterion as follows:
Theorem 2.4. Assume that there exist two positive numbers \(r_1 \) and \(r_2 \) such that \(\varphi(r_1) \leq r_1A \) and \(\psi(r_2) \geq r_2B \). Then, the BVP \((1.1)\) has at least one solution \(u^* \) satisfying \(u^* + u_0 \in K \) and

\[
\min \{r_1, r_2\} \leq \|u^* + u_0\| \leq \max \{r_1, r_2\}.
\]

Moreover, if \(\min \{r_1, r_2\} > \sigma(T)\sigma^2(T)M \), then \(u^* \) is a positive solution of the BVP \((1.1)\).

Proof. Since \(0 < A < B \), it is easy to see that \(r_1 \neq r_2 \). Without loss of generality, we assume that \(r_1 < r_2 \). Let

\[
\Omega_i = \{u \in \mathbb{X} \mid \|u\| < r_i\}, \quad i = 1, 2.
\]

If \(u \in K \cap \partial\Omega_1 \), i.e., \(u \in K \) and \(\|u\| = r_1 \), then \(0 \leq u(t) \leq r_1 \), \(t \in [0, \sigma^2(T)] \). So,

\[
-\sigma(T)\sigma^2(T)M \leq u(t) - u_0(t) \leq r_1, \quad t \in [0, \sigma^2(T)] \in T.
\]

And so,

\[
(2.12) \quad g(t, u(t) - u_0(t)) + M \leq \varphi(r_1) \leq r_1A, \quad t \in [0, T] \in T.
\]

It follows that

\[
(\Phi u)(t) = \int_0^{\sigma(T)} G(t, s)[g(s, u(s) - u_0(s)) + M] \Delta s
\]

\[
\leq r_1 A \int_0^{\sigma(T)} G(t, s) \Delta s
\]

\[
\leq r_1 A \max_{t \in [0, \sigma^2(T)]} \int_0^{\sigma(T)} G(t, s) \Delta s
\]

\[
= r_1, \quad t \in [0, \sigma^2(T)] \in T,
\]

which shows that

\[
(2.13) \quad \|\Phi u\| \leq \|u\| \quad \text{for} \quad u \in K \cap \partial\Omega_1.
\]

If \(u \in K \cap \partial\Omega_2 \), i.e., \(u \in K \) and \(\|u\| = r_2 \), then for \(t \in [\xi, \eta] \), we have

\[
\frac{\xi (\sigma^2(T) - \eta) r_2}{(\sigma^2(T))^2} \leq q(t) r_2 \leq u(t) \leq r_2
\]

and

\[
\frac{\xi (\sigma^2(T) - \eta) r_2}{(\sigma^2(T))^2} - \sigma(T)\sigma^2(T)M \leq u(t) - u_0(t) \leq r_2.
\]

So,

\[
(2.14) \quad g(t, u(t) - u_0(t)) + M \geq \psi(r_2) \geq r_2 B, \quad t \in [\xi, \eta] \in T.
\]
It follows that
\[
\|\Phi u\| = \max_{t \in [0, \sigma^2(T)]} \int_0^{\sigma(T)} G(t, s)[g(s, u(s) - u_0(s))] + M \Delta s \\
\geq \max_{t \in [0, \sigma^2(T)]} \int_0^\eta G(t, s)[g(s, u(s) - u_0(s))] + M \Delta s \\
\geq r_2 B \max_{t \in [0, \sigma^2(T)]} \int_0^\eta G(t, s) \Delta s \\
= r_2,
\]
i.e.,
\[
(2.15) \quad \|\Phi u\| \geq \|u\| \text{ for } u \in K \cap \partial \Omega_2.
\]

In view of (2.13), (2.15), Lemma 2.3, and Theorem 1.1, we know that the operator \(\Phi \) has at least one fixed point \(u \in K \cap \overline{(\Omega_2 \setminus \Omega_1)} \), which implies that the BVP (2.7) has at least one solution \(u \in K \) such that \(r_1 \leq \|u\| \leq r_2 \). Therefore, \(u^* = u - u_0 \) is a solution of the BVP (1.1) such that
\[
(2.16) \quad u^* + u_0 \in K \text{ and } r_1 \leq \|u^* + u_0\| \leq r_2.
\]

Moreover, if \(r_1 > \sigma(T) \sigma^2(T) M \), then for any \(t \in (0, \sigma^2(T)) \), by (2.16) and Lemma 2.2, we have
\[
\begin{align*}
 u^*(t) &= [u^*(t) + u_0(t)] - u_0(t) = [u^*(t) + u_0(t)] - M p(t) \\
 &\geq q(t) \|u^* + u_0\| - q(t) \sigma(T) \sigma^2(T) M \\
 &\geq q(t) r_1 - q(t) \sigma(T) \sigma^2(T) M \\
 &= [r_1 - \sigma(T) \sigma^2(T) M] q(t) \\
 &> 0,
\end{align*}
\]
which shows that \(u^* \) is a positive solution of the BVP (1.1).

Next, based on Theorem 2.4, we establish some criteria which ensure the existence of \(n \) solutions and/or positive solutions to the BVP (1.1); here \(n \) is an arbitrary positive integer.

Corollary 2.5. Suppose that there exist three positive numbers \(r_1, r_2 \) and \(r_3 \) with \(r_1 < r_2 < r_3 \) such that one of the following conditions is satisfied:

\[(a) \ \varphi(r_1) \leq r_1 A, \ \psi(r_2) > r_2 B, \ \varphi(r_3) \leq r_3 A, \]
or

\[(b) \ \psi(r_1) \geq r_1 B, \ \varphi(r_2) < r_2 A, \ \psi(r_3) \geq r_3 B. \]
Then the BVP (1.1) has at least two solutions \(u_1^*, u_2^* \) satisfying \(u_1^* + u_0, u_2^* + u_0 \in K \) and

\[
r_1 \leq \|u_1^* + u_0\| < r_2 < \|u_2^* + u_0\| \leq r_3.
\]

Moreover, if \(r_2 > \sigma(T)\sigma^2(T)M \), then \(u_2^* \) is a positive solution of the BVP (1.1), and if \(r_1 > \sigma(T)\sigma^2(T)M \), then \(u_1^*, u_2^* \) are both positive solutions of the BVP (1.1).

Proof. It is enough to prove case (a). Since \(\frac{\psi(r)}{r^2} : (0, +\infty) \to [0, +\infty) \) is continuous and \(\frac{\psi(r_2)}{r_2} > B \), there exist two positive numbers \(\tilde{r}_2 \) and \(r_2 \) with \(r_1 < \tilde{r}_2 < r_2 < r_3 < r_3 \) such that \(\psi(\tilde{r}_2) \geq \tilde{r}_2 B \) and \(\psi(r_2) \geq r_2 B \). It follows from Theorem 2.4 that the BVP (1.1) has at least two solutions \(u_1^*, u_2^* \) satisfying \(u_1^* + u_0, u_2^* + u_0 \in K \) and

\[
r_1 \leq \|u_1^* + u_0\| \leq \tilde{r}_2 < r_2 < r_3 \leq \|u_2^* + u_0\| \leq r_3.
\]

\[\square\]

Corollary 2.6. Suppose that there exist four positive numbers \(r_1, r_2, r_3 \) and \(r_4 \) with \(r_1 < r_2 < r_3 < r_4 \) such that one of the following conditions is satisfied:

(a) \(\varphi(r_1) \leq r_1 A, \varphi(r_2) > r_2 B, \varphi(r_3) < r_3 A, \varphi(r_4) \geq r_4 B \),

or

(b) \(\psi(r_1) \geq r_1 B, \varphi(r_2) < r_2 A, \psi(r_3) > r_3 B, \varphi(r_4) \leq r_4 A \).

Then the BVP (1.1) has at least three solutions \(u_1^*, u_2^*, u_3^* \) satisfying \(u_1^* + u_0, u_2^* + u_0, u_3^* + u_0 \in K \) and

\[
r_1 \leq \|u_1^* + u_0\| < r_2 < \|u_2^* + u_0\| < r_3 < \|u_3^* + u_0\| \leq r_4.
\]

Moreover, if \(r_3 > \sigma(T)\sigma^2(T)M \), then \(u_3^* \) is a positive solution of the BVP (1.1), if \(r_2 > \sigma(T)\sigma^2(T)M \), then \(u_2^*, u_3^* \) are both positive solutions of the BVP (1.1), and if \(r_1 > \sigma(T)\sigma^2(T)M \), then \(u_1^*, u_2^*, u_3^* \) are all positive solutions of the BVP (1.1).

Proof. We only prove case (a). Since \(\frac{\psi(r)}{r^2} : (0, +\infty) \to [0, +\infty), \frac{\varphi(r)}{r^2} : (0, +\infty) \to [0, +\infty) \) are continuous and \(\frac{\psi(r_2)}{r_2} > B, \frac{\varphi(r_3)}{r_3} < A \), there exist four positive numbers \(\tilde{r}_2, \tilde{r}_3, \tilde{r}_3, \tilde{r}_3 \) with \(r_1 < \tilde{r}_2 < r_2 < \tilde{r}_3 < \tilde{r}_3 < \tilde{r}_3 < r_3 \) such that \(\psi(\tilde{r}_2) \geq \tilde{r}_2 B \), \(\psi(\tilde{r}_3) \geq \tilde{r}_3 B \), \(\varphi(\tilde{r}_3) \leq \tilde{r}_3 A \), \(\varphi(\tilde{r}_3) \geq \tilde{r}_3 A \). It follows from Theorem 2.4 that the BVP (1.1) has at least three solutions \(u_1^*, u_2^*, u_3^* \) satisfying \(u_1^* + u_0, u_2^* + u_0, u_3^* + u_0 \in K \) and

\[
r_1 \leq \|u_1^* + u_0\| \leq \tilde{r}_2 < r_2 < \tilde{r}_3 \leq \|u_2^* + u_0\| \leq \tilde{r}_3 < r_3 \leq \|u_3^* + u_0\| \leq r_4.
\]

\[\square\]

Similarly, for arbitrary positive integer \(n \), the existence results of \(n \) solutions and/or positive solutions to the BVP (1.1) still hold.
Example 2.7. Consider the following BVP

\begin{equation}
\begin{cases}
-u^\Delta(t) = 128\sqrt{t(u(t) + 1)} - 1, & t \in [0, 1], \\
u(0) = 0 = u(1),
\end{cases}
\end{equation}

where \(T = \{0, \frac{1}{4}\} \cup \left[\frac{1}{4}, 1\right]. \)

Let \(T = 1, \) \(\xi = \frac{1}{4} \) and \(\eta = \frac{1}{2}. \) We first compute the values of \(A \) and \(B. \) In view of

\[
\int_0^\frac{1}{2} G(t, s) \Delta s = \sum_{s \in [0, \frac{1}{2}) T} \mu(s) G(t, s) = \begin{cases}
0, & t = 0, \\
\frac{5}{64}, & t = \frac{1}{4}, \\
\frac{1}{16}, & t \geq \frac{1}{2},
\end{cases}
\]

and

\[
\int_{\frac{1}{4}}^1 G(t, s) \Delta s = \begin{cases}
\frac{t^2}{2} + \frac{5t}{8} - \frac{1}{8}, & t \leq \frac{1}{2}, \\
\frac{1}{2} - \frac{t^2}{2} + \frac{7}{16}, & t \geq \frac{1}{2},
\end{cases}
\]

we have

\[
\int_0^1 G(t, s) \Delta s = \begin{cases}
0, & t = 0, \\
\frac{7}{64}, & t = \frac{1}{4}, \\
\frac{1}{2} - \frac{t^2}{2} + \frac{7}{16}, & t \geq \frac{1}{2},
\end{cases}
\]

So,

\[
A = \left[\max_{t \in [0, 1]} \int_0^1 G(t, s) \Delta s \right]^{-1} = \frac{32}{5},
\]

Since

\[
\int_{\frac{1}{4}}^{\frac{1}{2}} G(t, s) \Delta s = \sum_{s \in [\frac{1}{4}, \frac{1}{2}) T} \mu(s) G(t, s) = \begin{cases}
\frac{7}{8}, & t \leq \frac{1}{4}, \\
\frac{1}{8}, & t \geq \frac{1}{2},
\end{cases}
\]

we get

\[
B = \left[\max_{t \in [0, 1]} \int_{\frac{1}{4}}^{\frac{1}{2}} G(t, s) \Delta s \right]^{-1} = 16.
\]

Then, it is easy to verify that all the conditions of Theorem 2.4 are satisfied if we let \(g(t, u) = 128\sqrt{t(u + 1)} - 1, (t, u) \in [0, 1] \times [-1, +\infty), M = 1, r_1 = 10^4 \) and \(r_2 = 2. \) So, the BVP (2.17) has at least one positive solution.

3. ACKNOWLEDGEMENT

JIAN-PING SUN was supported by the NSF of Gansu Province of China and WAN-TONG LI was supported by the NNSF of China (10571078).
REFERENCES