QUENCHING CRITERIA FOR A DEGENERATE PARABOLIC PROBLEM DUE TO A CONCENTRATED NONLINEAR SOURCE

C. Y. CHAN

Department of Mathematics, University of Louisiana at Lafayette
Lafayette, LA 70504-1010, USA

ABSTRACT. A criterion for the quenching of the solution for a degenerate semilinear parabolic first initial-boundary value problem with a concentrated nonlinear source situated at \(b \) is given. The locations of \(b \) for global existence of the solution and for the quenching of the solution are given.

AMS (MOS) Subject Classification. 35K60, 35K57, 35K65, 35B35

1. INTRODUCTION

Let \(q, a, T \) and \(b \) be any numbers such that \(q \geq 0, a > 0, T > 0, \) and \(0 < b < 1. \) Also, let \(D \) denote the interval \((0,1)\), and \(\overline{D} \) be its closure. We consider the following degenerate semilinear parabolic first initial-boundary value problem with a concentrated nonlinear source situated at \(b \),

\[
\begin{cases}
x^q u_t - u_{xx} = a\delta(x-b)f(u(x,t)) & \text{in } D \times (0,T], \\
u(x,0) = 0 & \text{on } \overline{D}, \\
u(0,t) = u(1,t) = 0 & \text{for } 0 < t \leq T,
\end{cases}
\]

(1.1)

where \(\delta(x) \) is the Dirac delta function, \(f \) is a given function such that \(\lim_{u \to c^-} f(u) = \infty \) for some positive constant \(c \), and \(f(u) \) and its derivatives \(f'(u) \) and \(f''(u) \) are positive for \(0 \leq u < c \). The case \(q = 0 \) was studied by Deng and Roberts [7] by analyzing its corresponding nonlinear Volterra equation at the site \(b \) of the concentrated source. Instead of studying a solution \(u(b,t) \) of the nonlinear Volterra equation, we would like to investigate a solution \(u(x,t) \) of the degenerate problem (1.1).

The right-hand side of the partial differential equation in (1.1) has the term \(\delta(x-b) \). This implies that \(u_x \) has a jump discontinuity at \(x = b \). Thus, a solution of the problem (1.1) is a continuous function satisfying (1.1). In the proof of Theorem 3 of Chan and Jiang [4], it is shown that \(u_{xx} \geq 0 \) for \(x \in (0,b) \) and \(x \in (b,1) \). It follows from the differential equation in (1.1) that \(u_t(b,t) = \infty \) for each \(t > 0 \). Hence, we say that a solution \(u \) of the problem (1.1) is said to quench if there exists some \(t_q \) such that

\[
\max\{u(x,t) : x \in \overline{D}\} \to c^- \text{ as } t \to t_q
\]
(cf. Chan and Liu [5]). If \(t_q \) is finite, then \(u \) is said to quench in a finite time. On the other hand, if \(t_q = \infty \), then \(u \) is said to quench in infinite time.

Let \(G (x,t;\xi,\tau) \) denote Green’s function corresponding to the problem (1.1), and \(t_q \) denote the supremum of all \(t_1 \) such that on \([0,t_1]\), the integral equation,

\[
(1.2) \quad u (x,t) = a \int_0^t G (x,t;b,\tau) f (u (b,\tau)) d\tau,
\]
corresponding to the problem (1.1) has a unique nonnegative continuous solution. For ease of reference, we summarize the main results of Theorems 1, 2 and 3 of Chan and Jiang [4] as Theorem 1.1 below.

Theorem 1.1. There exists some \(t_q (\leq \infty) \) such that for \(0 \leq t < t_q \), the integral equation (1.2) has a unique nonnegative continuous solution \(u (x,t) \), which is a strictly increasing function of \(t \) in \(D \). Before a quenching occurs, \(u \) is the solution of the problem (1.1), and attains its maximum at \((b,t)\) for each \(t > 0 \). If \(t_q \) is finite, then \(u \) quenches at \(t_q \). Furthermore, if \(u \) quenches, then \(b \) is the single quenching point.

In Section 2, we give a criterion for the quenching. It turns out that the forcing term \(f (u) \) need not be superlinear in \(u \) for a quenching to occur. This is in sharp contrast with the blow-up phenomenon, which requires the forcing term to be superlinear (cf. Chan and Tian [6]). In Section 3, we find the exact position \(b^* \) for the problem (1.1) such that \(u \) never quenches for \(b \in (0,b^*] \cup [1-b^*,1) \), and \(u \) always quenches in a finite time for \(b \in (b^*,1-b^*) \). For illustration, an example is given.

2. A QUENCHING CRITERION

Let

\[
\mu (t) = \int_D x^q \phi (x) u (x,t) dx,
\]
where \(\phi \) denotes the normalized fundamental eigenfunction of the problem,

\[
\phi'' + \lambda x^q \phi = 0, \quad \phi(0) = \phi(1) = 0,
\]
with \(\lambda \) denoting its corresponding eigenvalue, which is positive (cf. Chan and Chan [2]). Below is a quenching criterion.

Theorem 2.1. If there exist constants \(c_1 (>0) \) and \(c_2 (\geq 0) \) such that

\[
(2.1) \quad \sqrt{1+q\phi (b)} f (u (b,t)) \geq c_1 + c_2 u (b,t),
\]

\[
(2.2) \quad \frac{\lambda}{a} > c_2, \quad \frac{ac_1}{\lambda - ac_2} > c,
\]
then \(u \) quenches in a finite time. Furthermore, an upper bound for the quenching time is given by

\[
\frac{1}{\lambda - ac_2} \ln \left[1 - \frac{(\lambda - ac_2)c}{ac_1} \right]^{-1}.
\]
Proof. Multiplying the partial differential equation in (1.1) by \(\phi \), and integrating with respect to \(x \) over \(D \), we obtain

\[
\mu' (t) + \lambda \mu (t) = a \phi (b) f (u (b,t)) .
\]

Since \(u (x,t) \leq u (b,t) \), we have

\[
\mu (t) \leq \left(\int_D x^q \phi (x) \, dx \right) u (b,t) .
\]

It follows from the Schwarz inequality and \(\int_D x^q \phi^2 (x) \, dx = 1 \) that

\[
\mu (t) \leq \left(\int_D x^q \phi^2 (x) \, dx \right)^{1/2} \left(\int_D x^q \, dx \right)^{1/2} u (b,t) \]

\[
= \frac{1}{\sqrt{1+q}} u (b,t) .
\]

By (2.1),

\[
a \phi (b) f (u (b,t)) \geq \frac{a}{\sqrt{1+q}} \left(c_1 + c_2 u (b,t) \right) \geq a \left(\frac{1}{\sqrt{1+q}} c_1 + c_2 \mu (t) \right) .
\]

From (2.3),

\[
\mu' (t) + (\lambda - ac_2) \mu (t) \geq a \frac{c_1}{\sqrt{1+q}} c_1.
\]

Since \(\mu (0) = 0 \), we obtain

\[
\mu (t) \geq \frac{ac_1}{\sqrt{1+q} (\lambda - ac_2)} \left[1 - e^{-(\lambda - ac_2)t} \right] .
\]

Hence,

\[
u (b,t) \geq \sqrt{1+q} \mu (t) \geq \frac{ac_1}{\lambda - ac_2} \left[1 - e^{-(\lambda - ac_2)t} \right] .
\]

From (2.2), there exists some finite \(t_q \) such that \(u \) quenches at \((b, t_q)\). An upper bound for the quenching time follows by setting the right-hand side of the above inequalities equal to \(c \) to evaluate \(t \).

\[
\square
\]

3. CRITICAL POSITION \(b^* \)

Let \(\lim_{t \to \infty} u (x,t) \) be denoted by \(U (x) \). For ease of reference, let us summarize the main results of Section 3 of Chan and Jiang [4] in the following theorem.

Theorem 3.1. There exists a critical length \(a^* \) such that \(u \) exists on \(\bar{D} \) for all \(t > 0 \) if \(a \leq a^* \), and \(u \) quenches in a finite time if \(a > a^* \). The critical length \(a^* \) is determined as the supremum of all positive values \(a \) for which a solution \(U \) of the nonlinear two-point boundary value problem,

\[
-U'' (x) = a \delta (x-b) f (U(x)) \text{ in } D, \quad U(0) = U(1) = 0,
\]

exists.
exists. Furthermore, \(u(x, t) < U(x) \) in \(D \times (0, \infty) \),

\[
U(x) = ag(x; b) f(U(b)),
\]

where

\[
g(x; \xi) = \begin{cases}
\xi (1 - x), & 0 \leq \xi \leq x, \\
x (1 - \xi), & x < \xi \leq 1,
\end{cases}
\]

is Green’s function corresponding to the problem (3.1),

\[
a^* = \frac{1}{b(1 - b)} \max_{0 \leq s \leq c} \left(\frac{s}{f(s)} \right) \text{ for a given } b \in D.
\]

As a consequence of the above theorem, the solution \(u \) does not quench in infinite time. We note from (3.3) that \(a^* \) depends on \(b \). For a given \(a (> a^*) \), there exists a position \(b \) such that the problem (1.1) quenches in a finite time. Chan and Boonklurb [1] studied the critical position of the concentrated source for a blow-up problem. Here, we give an analogous argument for the quenching problem (1.1). To find a position \(b \) for the same given \(a (> a^*) \) such that the solution \(u \) exists for all \(t > 0 \), let us first consider the problem (1.1) with \(q = 0 \), namely,

\[
\begin{align*}
vt - v_{xx} &= a\delta(x - b)f(v(x, t)) \quad \text{in } D \times (0, T], \\
v(x, 0) &= 0 \text{ on } \bar{D},
\end{align*}
\]

From Theorem 1.1, the quenching set is the single point \(x = b \), and

\[
v(b, t) = a \int_0^t G_0(b, t; b, \tau)f(v(b, \tau))d\tau,
\]

where

\[
G_0(x, t; \xi, \tau) = 2 \sum_{n=1}^{\infty} (\sin n\pi x)(\sin n\pi \xi)e^{-n^2\pi^2(t - \tau)} \quad \text{for } t > \tau
\]

is Green’s function corresponding to the problem (3.4). From Olmstead and Roberts [9],

\[
\int_0^t G_0(b, t; b, \tau)d\tau = b(1 - b) - \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{\sin^2 n\pi b}{n^2} e^{-n^2\pi^2 t}.
\]

Since \(\sum_{n=1}^{\infty} (\sin^2 n\pi b)e^{-n^2\pi^2 t}/n^2 \) and \(2 \sum_{n=1}^{\infty} (\sin^2 n\pi b)e^{-n^2\pi^2 t} \) converge uniformly in \((0, t)\), we have

\[
\frac{\partial}{\partial t} \left(\int_0^t G_0(b, t; b, \tau)d\tau \right) = 2 \sum_{n=1}^{\infty} (\sin^2 n\pi b)e^{-n^2\pi^2 t} > 0,
\]

(3.6)

\[
\lim_{t \to \infty} \int_0^t G_0(b, t; b, \tau)d\tau = b(1 - b) - \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{\sin^2 n\pi b}{n^2} \lim_{t \to \infty} e^{-n^2\pi^2 t} = b(1 - b).
\]
From Theorem 1.1, \(v(x,t) \) attains its maximum \(M \) at \((b,\theta)\) for \(0 \leq t \leq \theta \). Thus given any positive number \(M(<c) \), it follows from (3.5) and (3.6) that for \(0 \leq t \leq \theta \),

\[
v(b,t) \leq a f(M) \int_0^t G_0(b,\tau;b,\tau) d\tau \leq a f(M) b(1-b).
\]

In order that \(a f(M) b(1-b) \leq M \) so that \(v \) exists for all \(t > 0 \), we choose \(b \) in such a way that

\[
0 < b \leq \frac{1}{2} \left(1 - \sqrt{1 - \frac{4M}{af(M)}} \right) \quad \text{or} \quad \frac{1}{2} \left(1 + \sqrt{1 - \frac{4M}{af(M)}} \right) \leq b < 1.
\]

Since \(v \) is a nondecreasing function of \(t \), we have for \(0 \leq x \leq 1 \) and \(q > 0 \),

\[
x^q v_t - v_{xx} \leq v_t - v_{xx},
\]

which implies that the solution of the problem (1.1) is a lower solution of the problem (3.4). Thus under the above condition (3.7) on \(b \), the solution of (1.1) exists for all \(t > 0 \).

Let us consider the function

\[
\psi(U(b)) = \frac{U(b)}{f(U(b))}.
\]

Since \(\psi(U(b)) > 0 \) for \(0 < U(b) < c \), and \(\psi(0) = 0 = \lim_{U(b) \to c^-} \psi(U(b)) \), a direct computation shows that \(\psi(U(b)) \) attains its maximum when \(\psi(U(b)) = 1/f'(U(b)) \), where \(U(b) \in (0,c) \) by Rolle’s Theorem. Thus, \(\max(U(b)/f(U(b))) \) occurs when

\[
\frac{U(b)}{f(U(b))} = \frac{1}{f'(U(b))}, \quad \text{where} \ 0 < U(b) < c.
\]

This also implies that \(U(x) \) exists when \(a = a^* \).

From (3.2), \(U(b) = ab(1-b)f(U(b)) \). We would like to know how \(U(b) \) behaves as \(b \) varies when \(a > a^* \). A direct calculation gives

\[
U'(b) = \frac{a(1-2b)f(U(b))}{1-ab(1-b)f'(U(b))}.
\]

Since \(a > a^* \), and \(1/4 \geq b(1-b) \), we have

\[
1 - \frac{4}{\max_{0 \leq U \leq c} U(b)} U(b) > 1 - \frac{4}{a^* \max_{0 \leq U \leq c} U(b)} U(b) \geq 0.
\]

Thus for

\[
b \in \left(0, \frac{1}{2} \left(1 - \sqrt{1 - \frac{4}{\max_{0 \leq U \leq c} U(b)}} \frac{U(b)}{f(U(b))} \right) \right),
\]

the numerator is positive. Also,

\[
b < \frac{1}{2} \left(1 - \sqrt{1 - \frac{4}{\max_{0 \leq U \leq c} U(b)}} \frac{U(b)}{f(U(b))} \right)
\]
gives
\[b - \frac{1}{2} < -\frac{1}{2} \sqrt{1 - \frac{4}{a} \max_{0 \leq U \leq c} f(U(b))} < 0. \]

We have
\[\left(b - \frac{1}{2} \right)^2 > \frac{1}{4} \left(1 - \frac{4}{a} \max_{0 \leq U \leq c} f(U(b)) \right), \]
which by (3.8) gives
\[1 - ab (1 - b) f'(U(b)) > 0, \]
and hence, \(U'(b) > 0 \). Thus for a given \(a > a^* \), the function \(U(b) \) is a strictly increasing function of \(b \) for
\[b \in \left(0, 1 \right), \]
Similarly for a given \(a > a^* \), the function \(U(b) \) is a strictly decreasing function of \(b \) for
\[b \in \left(\frac{1}{2}, 1 \right). \]

Hence on the interval \((0, 1/2)\), the position \(b \) for global existence of \(u \) is closer to 0 than the position \(b \) for the quenching of \(u \) in a finite time. On the other hand, on the interval \((1/2, 1)\), the position \(b \) for global existence of \(u \) is closer to 1 than the position \(b \) for the quenching of \(u \) in a finite time. Thus, there exists \(b^* \in (0, 1/2) \) such that the steady state \(U(x) \) exists for \(b \in (0, b^*) \cup (1 - b^*, 1) \), and does not exist for \(b \in (b^*, 1 - b^*) \). We note that
\[b^* = \frac{1}{2} \left(1 - \sqrt{1 - \frac{4}{a} \max_{0 \leq U \leq c} f(U(b))} \right), \]
and is attained for \(0 < U(b) < c \) by (3.8). Since \(u(x, t) \leq U(x) = \lim_{t \to \infty} u(x, t) \) in \(D \times (0, \infty) \) when \(U \) exists, we have for \(b \in (0, b^*) \cup (1 - b^*, 1) \), \(u \) exists for \(0 \leq t < \infty \), and for \(b \in (b^*, 1 - b^*) \), \(u \) quenches in a finite time.

The above discussion gives the following result.

Theorem 3.2. For \(a > a^* \), the solution of the problem (1.1) exists globally for \(b \in (0, b^*) \cup (1 - b^*, 1) \), and quenches in a finite time for \(b \in (b^*, 1 - b^*) \).

For illustration, let \(f(u) = (1 - u)^{-p} \). A direct computation shows that
\[a^* = \frac{p}{b(1 - b)(1 + p)^{1+p}}, \]
\[b^* = \frac{1}{2} \left(1 - \sqrt{1 - \frac{4p^2}{a(1 + p)^{1+p}}} \right). \]

When \(p = 1 \) and \(b = 1/2 \), we have \(a^* = 1 \), and \(b^* = (1 - \sqrt{1 - a^{-1}}) / 2 \) for \(a > 1 \). We note that the concept of the quenching was introduced by Kawarada [8] through the
following problem, which arises in the study of a polarization phenomenon in ionic conductors:

\[u_t - u_{xx} = \frac{1}{1 - u} \quad \text{in} \quad (0, a) \times (0, T), \]

\[u(x, 0) = 0 \quad \text{on} \quad 0 \leq x \leq a, \]

\[u(0, t) = u(a, t) = 0 \quad \text{for} \quad 0 < t \leq T. \]

Its \(a^* = 1.5303 \) (to five significant figures) (cf. Chan and Chen [3]). Thus, the presence of the concentrated source shortens the critical length.

REFERENCES

