MULTIPLE POSITIVE SOLUTIONS OF STURM-LIOUVILLE PROBLEMS FOR SECOND ORDER IMPULSIVE DIFFERENTIAL EQUATIONS

DAQING JIANG, JIFENG CHU, AND YING HE

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, Jilin, China (jiangdq067@nenu.edu.cn)
Department of Applied Mathematics, College of Sciences, Hohai University, Nanjing 210098, China (chujf05@mails.tsinghua.edu.cn)

ABSTRACT. This paper is devoted to study the existence of multiple positive solutions for the second order Sturm-Liouville problems with impulse effects. The proof is based on the theory of fixed point index in cones.

Keywords: Boundary value problems; Impulse effects; Multiple positive solutions; Fixed point index in cones

2000 MR Subject Classification: 34B15; 34A37; 34C25

1. INTRODUCTION

This paper is devoted to study the existence of multiple positive solutions for the boundary value problem with impulse effects

\[
\begin{align*}
-Lu & = g(x,u), \quad x \in I', \\
-\Delta(pu')_{x=x_k} & = I_k(u(x_k)), \quad k = 1, 2, \ldots, m, \\
R_1(u) & = \alpha_1 u(0) + \beta_1 u'(0) = 0, \\
R_2(u) & = \alpha_2 u(1) + \beta_2 u'(1) = 0,
\end{align*}
\]

here \(Lu = (p(x)u')' + q(x)u\) is Sturm-Liouville operator, \(I = [0, 1]\), \(I' = I \setminus \{x_1, x_2, \ldots, x_m\}\) and \(0 < x_1 < x_2 < \cdots < x_m < 1\) are given, \(\mathbb{R}^+ = [0, \infty)\), \(g \in \mathbb{C}(I \times \mathbb{R}^+, \mathbb{R}^+)\), \(I_k \in \mathbb{C}(\mathbb{R}^+, \mathbb{R}^+)\), \(\Delta(pu')_{x=x_k} = p(x_k)u'(x_k^+) - p(x_k)u'(x_k^-), u'(x_k^+)\) (respectively \(u'(x_k^-)\)) denotes the right limit (respectively left limit) of \(u'(x)\) at \(x = x_k\).

Throughout this paper, we always suppose that

\((S_1)\) \(p(x) \in \mathbb{C}^1([0, 1], \mathbb{R}), p(x) > 0, q(x) \in \mathbb{C}([0, 1], \mathbb{R}), q(x) \leq 0, \alpha_1, \alpha_2, \beta_2 \geq 0, \beta_1 < 0, \alpha_1^2 + \beta_2^2 > 0, \alpha_2^2 + \beta_2^2 > 0.\)

In recent years, second-order differential boundary value problems with impulses have been studied extensively in the literature (see for instance [1, 3, 6, 7, 8, 9, 10, 11]...
and their references). However, most papers are concerned with the case $p(x) = 1$ and $q(x) = 0$. In this paper, we will consider the case $p(x) \neq 1$ and $q(x) \neq 0$. Here we also mention that second order dynamic inclusions on time scales with impulses has been studied in [2].

The existence of positive solutions of problem (1.1) has been studied in [5]. By employing Krasnosel’skii fixed point theorem on compression and expansion of cones, it was proved in [5] that problem (1.1) has at least one positive solution when $g(x, u)$ is either superlinear or sublinear in u. Our results in this paper improve those in [5]. The proof is based on fixed point index theory in cones [4].

To conclude the introduction, we introduce the following notation:

\[
g_0 = \liminf_{u \to 0^+} \min_{x \in [0,1]} \frac{g(x, u)}{u}, \quad I_0(k) = \liminf_{u \to 0^+} \frac{I_k(u)}{u},
\]

\[
g_\infty = \liminf_{u \to +\infty} \min_{x \in [0,1]} \frac{g(x, u)}{u}, \quad I_\infty(k) = \liminf_{u \to +\infty} \frac{I_k(u)}{u};
\]

\[
g^\infty = \limsup_{u \to +\infty} \max_{x \in [0,1]} \frac{g(x, u)}{u}, \quad I^\infty(k) = \limsup_{u \to +\infty} \frac{I_k(u)}{u},
\]

\[
g^0 = \limsup_{u \to 0^+} \max_{x \in [0,1]} \frac{g(x, u)}{u}, \quad I^0(k) = \limsup_{u \to 0^+} \frac{I_k(u)}{u}.
\]

Moreover, for the simplicity in the following discussion, we introduce the following hypotheses.

(H1) \(g_0 + \frac{\sigma \sum_{k=1}^{m} I_0(k) \phi_1(x_k)}{\int_0^1 \phi_1(x) dx} > \lambda_1, \quad g_\infty + \frac{\sigma \sum_{k=1}^{m} I_\infty(k) \phi_1(x_k)}{\int_0^1 \phi_1(x) dx} > \lambda_1, \)

(H2) \(g^0 + \frac{\sum_{k=1}^{m} I^0(k) \phi_1(x_k)}{\int_0^1 \frac{m(x) n(x)}{m(1) n(0)} \phi_1(x) dx} < \lambda_1, \quad g^\infty + \frac{\sum_{k=1}^{m} I^\infty(k) \phi_1(x_k)}{\int_0^1 \frac{m(x) n(x)}{m(1) n(0)} \phi_1(x) dx} < \lambda_1, \)

where \(\sigma = \min_{x \in [c_1, c_m]} \min \left\{ \frac{m(x)}{m(1)}, \frac{n(x)}{n(0)} \right\} \) (see section 2), and \(\phi_1(x) \) is the eigenfunction related to the smallest eigenvalue \(\lambda_1 \) of the eigenvalue problem \(-L\phi = \lambda\phi, \ \ R_1(\phi) = R_2(\phi) = 0. \)

(H3) There is a \(p > 0 \) such that \(0 \leq u \leq p \) and \(0 \leq x \leq 1 \) implies \(g(x, u) \leq \eta p, \ \ I_k(u) \leq \eta_k p, \)

here \(\eta, \eta_k \geq 0 \) satisfy \(\eta + \sum_{k=1}^{m} \eta_k > 0, \ \ \eta \int_0^1 G(y, y) dy + \sum_{k=1}^{m} G(x_k, x_k) \eta_k < 1 \) and \(G(x, y) \) is the Green’s function of boundary value problem \(-Lu = 0, \ \ R_1(u) = R_2(u) = 0 \) (see section 2).

(H4) There is a \(p > 0 \) such that \(\sigma p \leq u \leq p \) implies \(g(x, u) \geq \lambda p, \ \ 0 \leq x \leq 1, \ \ I_k(u) \geq \lambda_k p, \)
here λ, $\lambda_k \geq 0$ satisfy $\lambda + \sum_{k=1}^{m} \lambda_k > 0$ and $\lambda \int_{x_1}^{x_m} G(\frac{x}{2}, y) dy + \sum_{k=1}^{m} \lambda_k G(\frac{1}{2}, x_k) > 1$.

2. PRELIMINARIES

In this paper, we shall consider the following space

$$PC(I, \mathbb{R}) = \{u \in \mathbb{C}(I, \mathbb{R}); u'|_{(x_k, x_{k+1})} \in \mathbb{C}(x_k, x_{k+1}),$$

$$u'(x_k^-) = u'(x_k^+), \quad \exists u'(x_k), \quad k = 1, 2, \cdots, m\}$$

with the norm $\|u\|_{PC'} = \max\{\|u\|, \|u'\|\}$, here $\|u\| = \sup_{x \in [0, 1]} |u(x)|$, $\|u'\| = \sup_{x \in [0, 1]} |u'(x)|$.

Then $PC'(I, \mathbb{R})$ is a Banach space.

Definition 2.1. A function $u \in PC'(I, \mathbb{R}) \cap C^2(I', \mathbb{R})$ is a solution of (1.1) if it satisfies the differential equation

$$Lu + g(x, u) = 0, \quad x \in I'$$

and the function u satisfies conditions $\Delta (pu')|_{x=x_k} = -I_k(u(x_k))$ and $R_1(u) = R_2(u) = 0$.

Let $Q = I \times I$ and $Q_1 = \{(x, y) \in Q | 0 \leq x \leq y \leq 1\}$, $Q_2 = \{(x, y) \in Q | 0 \leq y \leq x \leq 1\}$. Let $G(x, y)$ is the Green's function of the boundary value problem

$$-Lu = 0, \quad R_1(u) = R_2(u) = 0.$$

Following from [5], $G(x, y)$ can be written by

$$G(x, y) := \begin{cases} \frac{m(x)n(y)}{\omega}, & (x, y) \in Q_1, \\ \frac{m(y)n(x)}{\omega}, & (x, y) \in Q_2. \end{cases}$$

Lemma 2.2. [4] Suppose that (S_1) holds, then the Green's function $G(x, y)$, defined by (2.1), possesses the following properties:

(i) $m(x) \in \mathbb{C}^2(I, R)$ is increasing and $m(x) > 0$, $x \in (0, 1]$.

(ii) $n(x) \in \mathbb{C}^2(I, R)$ is decreasing and $n(x) > 0$, $x \in [0, 1)$.

(iii) $(Lm)(x) \equiv 0$, $m(0) = -\beta_1$, $m'(0) = \alpha_1$.

(iv) $(Ln)(x) \equiv 0$, $n(1) = \beta_2$, $n'(1) = -\alpha_2$.

(v) ω is a positive constant. Moreover, $p(x)(m'(x)n(x) - m(x)n'(x)) \equiv \omega$.

(vi) $G(x, y)$ is continuous and symmetrical over Q.

(vii) $G(x, y)$ has continuously partial derivative over Q_1, Q_2.

(viii) For each fixed $y \in I$, $G(x, y)$ satisfies $LG(x, y) = 0$ for $x \neq y$, $x \in I$. Moreover, $R_1(G) = R_2(G) = 0$ for $y \in (0, 1)$.

Consider the linear Sturm-Liouville problem

\[-(Lu)(x) = \lambda u(x), \quad R_1(u) = R_2(u) = 0,\]

By the Sturm-Liouville theory of ordinary differential equations (see, for example, [4], [11]), we know that there exists an eigenfunction \(\phi_1(x)\) with respect to the first eigenvalue \(\lambda_1 > 0\) such that \(\phi_1(x) > 0\) for \(x \in (0, 1)\).

Following from Lemma 2.2, it is easy to see that

\[
\min \left\{ \frac{m(x)}{m(1)}, \frac{n(x)}{n(0)} \right\} \frac{m(y)n(y)}{\omega} \leq G(x, y) \leq G(y, y) = \frac{m(y)n(y)}{\omega}, \quad (x, y) \in [0, 1] \times [0, 1].
\]

Let \(E\) be a Banach space and \(K \subset E\) be a closed convex cone in \(E\). For \(r > 0\), let \(K_r = \{u \in K : ||u|| < r\}\) and \(\partial K_r = \{u \in K : ||u|| = r\}\). The following three Lemmas are needed in our argument, which can be found in [4].

Lemma 2.3. Let \(\Phi : K \to K\) be a continuous and completely continuous mapping and \(\Phi u \neq u\) for \(u \in \partial K_r\). Then the following conclusions hold:

(i) If \(||u|| \leq ||\Phi u||\) for \(u \in \partial K_r\), then \(i(\Phi, K_r, K) = 0\);

(ii) If \(||u|| \geq ||\Phi u||\) for \(u \in \partial K_r\), then \(i(\Phi, K_r, K) = 1\).

Lemma 2.4. Let \(\Phi : K \to K\) be a continuous and completely continuous mapping with \(\mu \Phi u \neq u\) for every \(u \in \partial K_r\) and \(0 < \mu \leq 1\). Then \(i(\Phi, K_r, K) = 1\).

Lemma 2.5. Let \(\Phi : K \to K\) be a continuous and completely continuous mapping. Suppose that the following two conditions are satisfied:

(i) \(\inf_{u \in \partial K_r} ||\Phi u|| > 0\); \quad (ii) \(\mu \Phi u \neq u\) for every \(u \in \partial K_r \) and \(\mu \geq 1\).

Then, \(i(\Phi, K_r, K) = 0\).

In applications below, we take \(E = C(I, \mathbb{R})\) and define

\[K = \{u \in C(I, \mathbb{R}) : u(x) \geq \min\{\frac{m(x)}{m(1)}, \frac{n(x)}{n(0)}\} ||u||, x \in I\}.\]

One may readily verify that \(K\) is a cone in \(E\).

Define an operator \(\Phi : K \to K\) by

\[(\Phi u)(x) = \int_0^1 G(x, y)g(y, u(y))dy + \sum_{k=1}^m G(x, x_k)I_k(u(x_k)), \quad x \in I.\]

Lemma 2.6. \(\Phi(K) \subset K\). Moreover, \(\Phi : K \to K\) is continuous and completely continuous.
Proof It is easy to see that $\Phi : K \to K$ is continuous and completely continuous. Thus we only need to show $\Phi(K) \subset K$.

In fact, for $u \in K$, by using inequalities (2.2), we have that

$$
\|\Phi u\| \leq \int_0^1 G(y, y)g(y, u(y))dy + \sum_{k=1}^{m} G(x_k, x_k)I_k(u(x_k))
$$

and

$$
(\Phi u)(x) \geq \min \left\{ \frac{m(x)}{m(1)}, \frac{n(x)}{n(0)} \right\} \int_0^1 G(y, y)g(y, u(y))dy \]
+ \min \left\{ \frac{m(x)}{m(1)}, \frac{n(x)}{n(0)} \right\} \sum_{k=1}^{m} G(x_k, x_k)I_k(u(x_k))

\geq \min \left\{ \frac{m(x)}{m(1)}, \frac{n(x)}{n(0)} \right\} \|\Phi u\|, \ x \in [0, 1].
$$

Thus, $\Phi(K) \subset K$. \hfill \Box

Lemma 2.7. If u is a fixed point of the operator Φ, then u is a solution of problem (1.1).

3. MAIN RESULTS

Lemma 3.1. If (H_3) is satisfied, then $i(\Phi, K_p, K) = 1$.

Proof Let $u \in K$ with $\|u\| = p$. It follows from (H_3) that

$$
\|\Phi u\| \leq \int_0^1 G(y, y)g(y, u(y))dy + \sum_{k=1}^{m} G(x_k, x_k)I_k(u(x_k))

\leq p \int_0^1 G(y, y)dy + \sum_{k=1}^{m} G(x_k, x_k)\eta_k < p = \|u\|.
$$

Thus

$$
\|\Phi u\| < \|u\|, \ \forall \ u \in \partial K_p.
$$

It is obvious that $\Phi u \neq u$ for $u \in \partial K_p$. Therefore, $i(\Phi, K_p, K) = 1$, here we use Lemma 2.3. \hfill \Box

Lemma 3.2. If (H_4) is satisfied, then $i(\Phi, K_p, K) = 0$.

Proof Let $u \in K$ with $\|u\| = p$, then

$$
u(x) \geq \min \left\{ \frac{m(x)}{m(1)}, \frac{n(x)}{n(0)} \right\} \|u\| \geq \min_{x \in [x_1, x_m]} \min \left\{ \frac{m(x)}{m(1)}, \frac{n(x)}{n(0)} \right\} \|u\| = \sigma p, \ x \in [x_1, x_m].
$$
It follows from (H_4) that
\[
(\Phi u)(\frac{1}{2}) \geq \int_{x_1}^{x_m} G(\frac{1}{2}, y)g(y, u(y))dy + \sum_{k=1}^{m} G(\frac{1}{2}, x_k)I_k(u(x_k)) \\
\geq p[\lambda \int_{x_1}^{x_m} G(\frac{1}{2}, y)dy + \sum_{k=1}^{m} \lambda_k G(\frac{1}{2}, x_k)] \\
> p = \|u\|.
\]
Therefore,
\[
\|\Phi u\| > \|u\|, \quad \forall \; u \in \partial K_p.
\]
Clearly \(\Phi u \neq u \) for \(u \in \partial K_p \). So, \(i(\Phi, K_p, K) = 0 \), here we use Lemma 2.3. \(\square \)

Theorem 3.3. Assume that (H_1) and (H_3) are satisfied. Then problem (1.1) has at least two positive solutions \(u_1 \) and \(u_2 \) with
\[
0 < \|u_1\| < p < \|u_2\|.
\]

Proof According to Lemma 3.1, we have that
\[
(3.1) \quad i(\Phi, K_p, K) = 1.
\]
Since (H_1) holds, then there exists \(0 < \varepsilon < 1 \) such that
\[
(3.2) \quad (1 - \varepsilon)[g_0 + \frac{\sigma \sum_{k=1}^{m} I_0(k)\phi_1(x_k)}{\int_{0}^{1} \phi_1(x)dx}] > \lambda_1, \quad (1 - \varepsilon)[g_{\infty} + \frac{\sigma \sum_{k=1}^{m} I_{\infty}(k)\phi_1(x_k)}{\int_{0}^{1} \phi_1(x)dx}] > \lambda_1.
\]
By the definitions of \(g_0, \; I_0, \) one can find \(0 < r_0 < p \) such that
\[
g(x, u) \geq g_0(1 - \varepsilon)u, \quad I_k(u) \geq I_0(k)(1 - \varepsilon)u, \quad \forall \; x \in [0, 1], 0 < u < r_0.
\]
Let \(r \in (0, r_0) \), then for \(u \in \partial K_r, \; x \in [x_1, x_m] \), we have
\[
u(x) \geq \min_{x \in [x_1, x_m]} \min \{ \frac{m(x)}{m(1)}, \frac{n(x)}{n(0)} \}\|u\| = \sigma r.
\]
Thus
\[
(\Phi u)(\frac{1}{2}) = \int_{0}^{1} G(\frac{1}{2}, y)g(y, u(y))dy + \sum_{k=1}^{m} G(\frac{1}{2}, x_k)I_k(u(x_k)) \\
\geq \int_{x_1}^{x_m} G(\frac{1}{2}, y)g(y, u(y))dy + \sum_{k=1}^{m} G(\frac{1}{2}, x_k)I_k(u(x_k)) \\
\geq g_0(1 - \varepsilon) \int_{x_1}^{x_m} G(\frac{1}{2}, y)u(y)dy + (1 - \varepsilon) \sum_{k=1}^{m} G(\frac{1}{2}, x_k)I_0(k)u(x_k) \\
\geq (1 - \varepsilon)\sigma r[g_0 \int_{x_1}^{x_m} G(\frac{1}{2}, y)dy + \sum_{k=1}^{m} G(\frac{1}{2}, x_k)I_0(k)],
\]
from which we see that \(\inf_{u \in \partial K_r} \|\Phi u\| > 0 \), namely, hypothesis (i) of Lemma 2.5 holds.
Next we show that \(\mu \Phi u \neq u \) for any \(u \in \partial K_r \) and \(\mu \geq 1 \).
If this is not true, then there exist \(u_0 \in \partial K_r \) and \(\mu_0 \geq 1 \) such that \(\mu_0 \Phi u_0 = u_0 \).

Note that \(u_0(x) \) satisfies

\[
\begin{aligned}
Lu_0(x) + \mu_0 q(x, u_0(x)) &= 0, \quad x \in I', \\
-\Delta (p u_0')_{x=x_k} &= \mu_0 I_k(u_0(x_k)), \quad k = 1, 2, \ldots, m, \\
\alpha_1 u_0(0) + \beta_1 u_0'(0) &= 0 \\
\alpha_2 u_0(1) + \beta_2 u_0'(1) &= 0.
\end{aligned}
\]

Multiply equation (3.3) by \(\phi_1(x) \) and integrate from 0 to 1, note that

\[
\begin{aligned}
&\int_0^1 \phi_1(x)[(p(x)u_0'(x))' + q(x)u_0(x)]dx = \int_0^1 \phi_1(x)[(p(x)u_0'(x))' + q(x)u_0(x)]dx \\
&+ \sum_{k=1}^{m-1} \int_{x_k}^{x_{k+1}} \phi_1(x)[(p(x)u_0'(x))' + q(x)u_0(x)]dx \\
&+ \int_{x_m}^1 \phi_1(x)[(p(x)u_0'(x))' + q(x)u_0(x)]dx \\
= &\phi_1(x_1)p(x_1)u_0'(x_1 - 0) - \phi_1(0)p(0)u_0'(0) - \int_0^{x_1} p(x)u_0'(x)\phi_1(x)dx \\
&+ \int_0^{x_1} q(x)u_0(x)\phi_1(x)dx + \sum_{k=1}^{m-1} [\phi_1(x_{k+1})p(x_{k+1})u_0'(x_{k+1} - 0) \\
&- \phi_1(x_k)p(x_k)u_0'(x_k + 0) - \int_{x_k}^{x_{k+1}} p(x)u_0'(x)\phi_1(x)dx \\
&+ \int_{x_k}^{x_{k+1}} q(x)u_0(x)\phi_1(x)dx + \phi_1(1)p(1)u_0'(1) - \phi_1(x_m)p(x_m)u_0'(x_m + 0) \\
&- \int_{x_m}^1 p(x)u_0'(x)\phi_1(x)dx + \int_{x_m}^1 q(x)u_0(x)\phi_1(x)dx \\
= &- \sum_{k=1}^{m} \Delta (p(x_k)u_0'(x_k))\phi_1(x_k) - \int_0^1 p(x)\phi_1'(x)u_0'(x)dx + \int_0^1 q(x)\phi_1(x)u_0(x)dx \\
&+ \phi_1(1)p(1)u_0'(1) - \phi_1(0)p(0)u_0'(0).
\end{aligned}
\]

Also note that

\[
\begin{aligned}
\int_0^1 p(x)\phi_1'(x)u_0'(x)dx &= \int_0^1 p(x)\phi_1'(x)du_0(x) \\
&= p(1)\phi_1'(1)u_0(1) - p(0)\phi_1'(0)u_0(0) - \int_0^1 u_0(x)(p(x)\phi_1'(x))'dx \\
&= p(1)\phi_1'(1)u_0(1) - p(0)\phi_1'(0)u_0(0) + \int_0^1 u_0(x)q(x)\phi_1(x)dx \\
&+ \lambda_1 \int_0^1 u_0(x)\phi_1(x)dx.
\end{aligned}
\]
Thus, by the boundary conditions, we have
\[
\int_0^1 \phi_1(x)[(p(x)u_0'(x))' + q(x)u_0(x)]dx = -\sum_{k=1}^m \Delta(p(x_k)u_0'(x_k))\phi_1(x_k)
- p(1)\phi_1'(1)u_0(1) + p(0)\phi_1'(0)u_0(0)
- \int_0^1 u_0(x)q(x)\phi_1(x)dx - \lambda_1 \int_0^1 u_0(x)\phi_1(x)dx
+ \int_0^1 q(x)\phi_1(x)u_0(x)dx + \phi_1(1)p(1)u_0'(1) - \phi_1(0)p(0)u_0'(0)
\]
\[
= -\sum_{k=1}^m \Delta(p(x_k)u_0'(x_k))\phi_1(x_k) - \lambda_1 \int_0^1 u_0(x)\phi_1(x)dx
+ \sum_{k=1}^m \mu_k I_k(u_0(x_k))\phi_1(x_k) - \lambda_1 \int_0^1 u_0(x)\phi_1(x)dx.
\]

So we obtain
\[
\lambda_1 \int_0^1 u_0(x)\phi_1(x)dx = \mu_0 \sum_{k=1}^m I_k(u_0(x_k))\phi_1(x_k) + \mu_0 \int_0^1 \phi_1(x)g(x, u_0(x))dx
\geq (1 - \varepsilon) \sum_{k=1}^m I_0(k)\phi_1(x_k)u_0(x_k) + (1 - \varepsilon)g_0 \int_0^1 \phi_1(x)u_0(x)dx.
\]

Since \(u_0(x) \geq \min\{\frac{m(x)}{m(1)}, \frac{n(x)}{n(0)}\}\|u_0\| \geq \min\{\frac{m(x)}{m(1)}, \frac{n(x)}{n(0)}\}r\), we have \(\int_0^1 \phi_1(x)u_0(x)dx > 0\), and so from the above inequality we see that \(\lambda_1 \geq (1 - \varepsilon)g_0\). If \(\lambda_1 = (1 - \varepsilon)g_0\), then \(I_0(k) = 0, k = 1, 2, \ldots, m\). But from (3.2) we have \((1 - \varepsilon)g_0 > \lambda_1\), which is a contradiction. So \(\lambda_1 > (1 - \varepsilon)g_0\). Thus
\[
[\lambda_1 - (1 - \varepsilon)g_0] \int_0^1 u_0(x)\phi_1(x)dx \geq (1 - \varepsilon) \sum_{k=1}^m I_0(k)\phi_1(x_k)u(x_k)
\geq (1 - \varepsilon)\sigma r \sum_{k=1}^m I_0(k)\phi_1(x_k).
\]

Since \(\int_0^1 u_0(x)\phi_1(x)dx \leq r \int_0^1 \phi_1(x)dx\), we have
\[
[\lambda_1 - (1 - \varepsilon)g_0] \int_0^1 \phi_1(x)dx \geq (1 - \varepsilon)\sigma \sum_{k=1}^m I_0(k)\phi_1(x_k),
\]
which contradicts (3.2) again. Hence \(\Phi\) satisfies the hypotheses of Lemma 2.5 in \(K_r\). Thus
\[
(3.4) \quad i(\Phi, K_r, K) = 0.
\]

On the other hand, from (H1), there exists \(H > p\) such that
\[
(3.5) \quad g(x, u) \geq g_\infty(1 - \varepsilon)u, \quad I_k(u) \geq I_\infty(k)(1 - \varepsilon)u, \forall x \in [0, 1], \ u \geq H.
\]
Let \(C = \max_{0 \leq u \leq R} \max_{0 \leq x \leq 1} |g(x, u) - g_\infty(1 - \varepsilon)u| + \sum_{k=1}^{m} \max_{0 \leq u \leq H} |I_k(u) - I_\infty(k)(1 - \varepsilon)u| \). It is clear that

\[
(3.6) \quad g(x, u) \geq g_\infty(1 - \varepsilon)u - C, \quad I_k(u) \geq I_\infty(k)(1 - \varepsilon)u - C, \quad \forall \ x \in [0, 1], \ u \geq 0.
\]

Choose \(R > R_0 := \max\{H, \sigma, p\} \) and let \(u \in \partial K_R \). Since \(u(x) \geq \sigma ||u|| = \sigma R > H \) for \(x \in [x_1, x_m] \), from (3.5) we see that

\[
g(x, u(x)) \geq g_\infty(1 - \varepsilon)u(x) \geq \sigma g_\infty(1 - \varepsilon)R, \quad \forall \ x \in [x_1, x_m].
\]

\[
I_k(u(x_k)) \geq \sigma I_\infty(k)(1 - \varepsilon)R.
\]

Essentially the same reasoning as above yields \(\inf_{u \in \partial K_R} ||\Phi u|| > 0 \). Next we show that if \(R \) is large enough, then \(\mu \Phi u \neq u \) for any \(u \in \partial K_R \) and \(\mu \geq 1 \). In fact, if there exist \(u_0 \in \partial K_R \) and \(\mu_0 \geq 1 \) such that \(\mu_0 \Phi u_0 = u_0 \), then \(u_0(x) \) satisfies equation (3.3).

Multiply equation (3.3) by \(\phi_1(x) \) and integrate from 0 to 1, using integration by parts in the left side to obtain

\[
\begin{align*}
\lambda_1 \int_0^1 u_0(x)\phi_1(x)dx &= \mu_0 \sum_{k=1}^{m} I_k(u_0(x_k))\phi_1(x_k) + \mu_0 \int_0^1 g(x, u_0(x))\phi_1(x)dx \\
&\geq (1 - \varepsilon) \sum_{k=1}^{m} I_\infty(k)\phi_1(x_k)u_0(x_k) + (1 - \varepsilon)g_\infty \int_0^1 u_0(x)\phi_1(x)dx \\
&- C\left(\sum_{k=1}^{m} \phi_1(x_k) + \int_0^1 \phi_1(x)dx\right).
\end{align*}
\]

If \(g_\infty \leq \lambda_1 \), then we have

\[
[\lambda_1 - (1 - \varepsilon)g_\infty] \int_0^1 u_0(x)\phi_1(x)dx + C \left(\sum_{k=1}^{m} \phi_1(x_k) + \int_0^1 \phi_1(x)dx\right) \\
\geq (1 - \varepsilon) \sum_{k=1}^{m} I_\infty(k)\phi_1(x_k)u_0(x_k),
\]

thus

\[
||u_0||[\lambda_1 - (1 - \varepsilon)g_\infty] \int_0^1 \phi_1(x)dx + C \left(\sum_{k=1}^{m} \phi_1(x_k) + \int_0^1 \phi_1(x)dx\right) \\
\geq (1 - \varepsilon)\sigma ||u_0|| \sum_{k=1}^{m} I_\infty(k)\phi_1(x_k)
\]

and

\[
(3.7a) \quad ||u_0|| \leq \frac{C\left(\sum_{k=1}^{m} \phi_1(x_k) + \int_0^1 \phi_1(x)dx\right)}{(1 - \varepsilon)\sigma \sum_{k=1}^{m} I_\infty(k)\phi_1(x_k) - [\lambda_1 - (1 - \varepsilon)g_\infty] \int_0^1 \phi_1(x)dx} =: \bar{R}.
\]
If \(g_\infty > \lambda_1 \), we can choose \(\varepsilon > 0 \) such that \((1 - \varepsilon)g_\infty > \lambda_1 \), then we have

\[
C \left(\sum_{k=1}^{m} \phi_1(x_k) + \int_{0}^{1} \phi_1(x)dx \right) \geq [(1 - \varepsilon)g_\infty - \lambda_1] \int_{0}^{1} \phi_1(x)u_0(x)dx \\
\geq [(1 - \varepsilon)g_\infty - \lambda_1] \|u_0\| \int_{0}^{1} \left(\frac{m(x) n(x)}{m(1) n(0)} \right) \phi_1(x)dx.
\]

Thus

\[
(3.7b) \quad \|u_0\| \leq \frac{C \left(\sum_{k=1}^{m} \phi_1(x_k) + \int_{0}^{1} \phi_1(x)dx \right)}{[(1 - \varepsilon)g_\infty - \lambda_1] \int_{0}^{1} \left(\frac{m(x) n(x)}{m(1) n(0)} \right) \phi_1(x)dx} =: \tilde{R}.
\]

Let \(R > \max\{p, \tilde{R}\} \), then for any \(u \in \partial K_R \) and \(\mu \geq 1 \), we have \(\mu \Phi u \neq u \). Hence hypothesis (ii) of Lemma 2.5 is satisfied and

\[
(3.8) \quad i(\Phi, K_R, K) = 0.
\]

In view of (3.1), (3.4) and (3.8), we obtain

\[
i(\Phi, K_R \setminus \bar{K}_p, K) = -1, \ i(\Phi, K_p \setminus \bar{K}_r, K) = 1.
\]

Then \(\Phi \) has fixed points \(u_1 \) and \(u_2 \) in \(K_p \setminus \bar{K}_r \) and \(K_R \setminus \bar{K}_p \), respectively, which means \(u_1(x) \) and \(u_2(x) \) are positive solution of the problem (1.1) and \(0 < \|u_1\| < p < \|u_2\| \).

Corollary 3.4. The conclusion of Theorem 3.3 is valid if (H1) is replaced by

(H1*) \(g_0 = \infty \) or \(\sum_{k=1}^{m} I_0(k)\phi_1(x_k) = \infty; \quad g_\infty = \infty \) or \(\sum_{k=1}^{m} I_\infty(k)\phi_1(x_k) = \infty. \)

Theorem 3.5. Assume that (H2) and (H4) are satisfied, then problem (1.1) has at least two positive solutions \(u_1 \) and \(u_2 \) with

\[
0 < \|u_1\| < p < \|u_2\|.
\]

Proof According to Lemma 3.2, we have that

\[
(3.9) \quad i(\Phi, K_p, K) = 0.
\]

Since (H2) holds, there exists \(0 < \varepsilon < \min\{\lambda_1 - g^0, \lambda_1 - g^\infty\} \) such that

\[
(3.10) \quad (\lambda_1 - \varepsilon - g^0) \int_{0}^{1} \left(\frac{m(x) n(x)}{m(1) n(0)} \right) \phi_1(x)dx > \sum_{k=1}^{m} (I^0(k) + \varepsilon)\phi_1(x_k),
\]

and

\[
(3.11) \quad (\lambda_1 - \varepsilon - g^\infty) \int_{0}^{1} \left(\frac{m(x) n(x)}{m(1) n(0)} \right) \phi_1(x)dx > \sum_{k=1}^{m} (I^\infty(k) + \varepsilon)\phi_1(x_k).
\]

One can find \(0 < r_0 < p \) such that

\[
(3.12) \quad g(x, u) \leq (g^0 + \varepsilon)u, \quad I_k(u) \leq (I^0(k) + \varepsilon)u, \forall x \in [0, 1], \ 0 \leq u \leq r_0.
\]
Let $r \in (0, r_0)$. Now we prove that $\mu \Phi u \neq u$ for any $x \in \partial K_r$ and $0 < \mu \leq 1$. If this is not true, then there exist $u_0 \in \partial K_r$ and $0 < \mu_0 \leq 1$ such that $\mu_0 \Phi u_0 = u_0$. Then $u_0(x)$ satisfies equation (3.3). Multiply equation (3.3) by $\phi_1(x)$ and integrate from 0 to 1, using (3.12), to obtain

$$
\lambda_1 \int_0^1 u_0(x)\phi_1(x)dx = \mu_0 \sum_{k=1}^m I_k(u_0(x_k))\phi_1(x_k) + \mu_0 \int_0^1 \phi_1(x)g(x, u_0(x))dx \\
\leq \sum_{k=1}^m (I^0(k) + \varepsilon)u_0(x_k)\phi_1(x_k) + \int_0^1 \phi_1(x)u_0(x)dx(g^0 + \varepsilon),
$$

i.e.

$$(\lambda_1 - g^0 - \varepsilon) \int_0^1 u_0(x)\phi_1(x)dx \leq \sum_{k=1}^m (I^0(k) + \varepsilon)u_0(x_k)\phi_1(x_k) \leq r \sum_{k=1}^m (I^0(k) + \varepsilon)\phi_1(x_k).$$

Since $u_0(x) \geq \min\left\{\frac{m(x)}{m(1)}, \frac{n(x)}{n(0)}\right\} ||u_0|| \geq \left(\frac{m(x)}{m(1)} \frac{n(x)}{n(0)}\right) r$, and so from the above inequality we see that

$$(\lambda_1 - g^0 - \varepsilon) \int_0^1 \left(\frac{m(x)}{m(1)} \frac{n(x)}{n(0)}\right) \phi_1(x)dx \leq \sum_{k=1}^m (I^0(k) + \varepsilon)\phi_1(x_k),$$

which is a contradiction. By Lemma 2.4, we have

$$i(\Phi, K_r, K) = 1.$$

On the other hand, from (H2), there exist $H > p$ such that

$$g(x, u) \leq (g^\infty + \varepsilon)u, \; I_k(u) \leq (I^\infty(k) + \varepsilon)u \; \forall \; x \in [0, 1], \; u \geq H.$$

Let $C = \max_{0 \leq u \leq H} \max_{0 \leq x \leq 1} |g(x, u) - (g^\infty + \varepsilon)u| + \sum_{k=1}^m \max_{0 \leq u \leq H} |I_k(u) - (I^\infty(k) + \varepsilon)u|$. It is clear that

$$g(x, u) \leq (g^\infty + \varepsilon)u + C, \; I_k(u) \leq (I^\infty(k) + \varepsilon)u + C, \; \forall \; x \in [0, 1], \; u \geq 0.$$

Next we show that if R is large enough, then $\mu \Phi u \neq u$ for any $u \in \partial K_R$ and $0 < \mu \leq 1$. In fact, if there exist $u_0 \in \partial K_R$ and $0 < \mu_0 \leq 1$ such that $\mu_0 \Phi u_0 = u_0$, then $u_0(x)$ satisfies equation (3.3). Multiply equation (3.3) by $\phi_1(x)$ and integrate from 0 to 1, using (3.14), to obtain

$$\lambda_1 \int_0^1 u_0(x)\phi_1(x)dx = \mu_0 \sum_{k=1}^m I_k(u_0(x_k))\phi_1(x_k) + \mu_0 \int_0^1 g(x, u_0(x))\phi_1(x)dx \\
\leq \sum_{k=1}^m (I^\infty(k) + \varepsilon)\phi_1(x_k)u_0(x_k) + \int_0^1 \phi_1(x)u_0(x)dx(g^\infty + \varepsilon) + C \sum_{k=1}^m \phi_1(x_k) + \int_0^1 \phi_1(x)dx,$$

i.e.,
\[(\lambda_1 - g^{\infty} - \varepsilon) \int_0^1 u_0(x) \phi_1(x) dx \leq \sum_{k=1}^m (I_{(k)}^\infty + \varepsilon) \phi_1(x_k)u_0(x_k) + C\left(\sum_{k=1}^m \phi_1(x_k) + \int_0^1 \phi_1(x) dx\right)\]

(3.15)

Also we have \(\int_0^1 u_0(x) \phi_1(x) dx \geq \|u_0\| \int_0^1 (\frac{m(x)}{m(\sigma(x))}) \phi_1(x) dx\), and this together with (3.15) yields

\[
\|u_0\| \leq \frac{C\left(\sum_{k=1}^m \phi_1(x_k) + \int_0^1 \phi_1(x) dx\right)}{(\lambda_1 - g^{\infty} - \varepsilon) \int_0^1 (\frac{m(x)}{m(\sigma(x))}) \phi_1(x) dx - \sum_{k=1}^m (I_{(k)}^\infty + \varepsilon) \phi_1(x_k)} =: \bar{R}.
\]

Let \(R = \max\{p, \bar{R}\}\), then for any \(x \in \partial K_R\) and \(0 < \mu \leq 1\), we have \(\mu \Phi u \neq u\). Thus

(3.16)

\(i(\Phi, K_R, K) = 1\).

In view of (3.9), (3.13) and (3.16), we obtain

\(i(\Phi, K_R \setminus \bar{K}_p, K) = 1, \quad i(\Phi, K_p \setminus \bar{K}_r, K) = -1\).

Then \(\Phi\) has fixed points \(u_1\) and \(u_2\) in \(K_p \setminus \bar{K}_r\) and \(K_R \setminus \bar{K}_p\), respectively, which means \(u_1(x)\) and \(u_2(x)\) are positive solution of problem (1.1) and \(0 < \|u_1\| < p < \|u_2\|\).

Corollary 3.6. The conclusion of Theorem 3.5 is valid if (H2) is replaced by

(H2*) \(g^0 = 0\) and \(I^0(k) = 0, \quad k = 1, 2, \ldots, m\); \(g^{\infty} = 0\) and \(I^\infty(k) = 0, \quad k = 1, 2, \ldots, m\).

The proof of the following two Theorems follows the ideas in the proof of Theorems 3.3 and 3.5. Here we omit it here.

Theorem 3.7. Assume the following condition is satisfied:

\[
g_0 + \frac{\sigma \sum_{k=1}^m I_0(k) \phi_1(x_k)}{\int_0^1 \phi_1(x) dx} > \lambda_1, \quad g^{\infty} + \frac{\sum_{k=1}^m I_{(k)}^\infty \phi_1(x_k)}{\int_0^1 (\frac{m(x)}{m(\sigma(x))}) \phi_1(x) dx} < \lambda_1.
\]

Then (1.1) has at least one positive solution.

Corollary 3.8. Assume the following condition is satisfied:

\(g_0 = \infty\) or \(\sum_{k=1}^m I_0(k) \phi_1(x_k) = \infty, \quad g^{\infty} = 0\) and \(I^\infty(k) = 0, \quad k = 1, \ldots, m\)

Then (1.1) has at least one positive solution.
Theorem 3.9. Assume the following condition is satisfied:

\[
g^0 + \sum_{k=1}^{m} \frac{I^0(k)\phi_1(x_k)}{\int_0^1 \frac{m(x)n(x)}{m(1)n(0)}\phi_1(x)dx} < \lambda_1, \quad g_\infty + \frac{\sigma \sum_{k=1}^{m} I^\infty(k)\phi_1(x_k)}{\int_0^1 \phi_1(x)dx} > \lambda_1.
\]

Then (1.1) has at least one positive solution.

Corollary 3.10. Assume that

\[
g^0 = 0 \quad \text{and} \quad I^0(k) = 0, \quad k = 1, \ldots, m; \quad g_\infty = \infty \quad \text{or} \quad \sum_{k=1}^{m} I^\infty(k)\phi_1(x_k) = \infty.
\]

Then (1.1) has at least one positive solution.

Example 3.11. Consider the following impulsive boundary value problem

\[
Lu + Au^\alpha + Bu^\beta = 0, \quad x \in I', \quad 0 < \alpha < 1 < \beta, \quad A > 0, \quad B > 0,
\]

\[
-\Delta(pu')|_{x=x_k} = c_k u(x_k), \quad c_k \geq 0,
\]

\[
R_1(u) = \alpha_1 u(0) + \beta_1 u'(0) = 0,
\]

\[
R_2(u) = \alpha_2 u(1) + \beta_2 u'(1) = 0,
\]

here \(Lu = (p(x)u')' + q(x)u\). Assume that \((S_1)\) is satisfied. Then problem (3.17) has at least two positive solutions \(u_1\) and \(u_2\) with

\[
0 < ||u_1|| < 1 < ||u_2||
\]

provided

\[
A + B < \frac{1}{d}(1 - \sum_{k=1}^{m} G(x_k, x_k)c_k), \quad d = \int_0^1 G(y,y)dy.
\]

Proof To see this we will apply Theorem 3.3 (or Corollary 3.4).

By (3.18), \(\eta > 0\) is chosen such that

\[
A + B < \eta < \frac{1}{d}(1 - \sum_{k=1}^{m} G(x_k, x_k)c_k).
\]

Set

\[
g(x, u) = Au^\alpha + Bu^\beta.
\]

Note

\[
g_0 = \infty, \quad g_\infty = \infty,
\]

so \((H_1)\) (or \((H_1^*)\)) holds.

Let \(\eta_k = c_k\), then \(\eta, \ \eta_k\) satisfy

\[
\eta \int_0^1 G(y,y)dy + \sum_{k=1}^{m} G(x_k, x_k)\eta_k < 1.
\]

Let \(p = 1\), then for \(0 \leq u \leq p\), we have

\[
g(x, u) = Au^\alpha + Bu^\beta \leq A + B < \eta p = \eta,
\]
and
\[I_k(u) = c_k u = \eta_k u \leq \eta_k p, \]
thus (H_3) holds. The result now follows from Theorem 3.3 (or Corollary 3.4). □

Acknowledgment. The authors are grateful to the referees for their useful suggestions.

REFERENCES

