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Abstract: In this paper, we develop an O(k
2
+ k

2
hl+

3 )lh  nine-point compact off-step finite difference 

discretization for the solution of the system of two-dimensional  non-linear elliptic equations subject 

to Dirichlet boundary conditions, by using variable mesh lengths hl in x-direction and a constant 

mesh length k in y-direction. We use only three function evaluations. Further we discuss the 

conditions for the convergence of the iterative methods applied to the system of difference equations 

so framed for the steady state 2D convection-diffusion equation. Numerical illustrations of some 

benchmark problems including 2D non-linear convection equation and 2D steady-state Navier-stokes 

equations of motion are provided to depict the efficiency of the method. 

 

Keywords: Variable mesh; Convection-diffusion equation; Off-step discretization; Non linear 
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1. INTRODUCTION 

 We consider the following system of two dimensional non-linear elliptic boundary 

value problems 

            
( ) ( ) ( ) (1) (2) ( ) (1) (2) ( ) (1) (2) ( )( , , , ,..., , , ,..., , , ,..., ),i i i n n n

xx yy x x x y y yu u f x y u u u u u u u u u                        (1) 

defined in a bounded region  {( , ) | 0 , 1}x y x y    with boundary  , such that 

          
( ) ( )

0( , ) ( , )i iu x y u x y ;  ( , )x y  ,                                                                            (2) 

where throughout this paper, i varies from 1, 2,…, n, where n > 0 is a positive integer. 

We assume that for ( , )x y   and j =1,2,…,n, 
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a) each 
( ) (1) (2) ( ) (1) (2) ( ) (1) (2) ( )( , , , ,..., , , ,..., , , ,..., )i n n n

x x x y y yf x y u u u u u u u u u  is continuous, 

b) 
( ) ( )

( ) ( )
, 

i i

j j

x

f f

u u

 

 
 and 

( )

( )

i

j

y

f

u




  exist and are continuous, 

c) 
( )

( )
0

i

j

f

u





, 

( )
( )

( )( )

i
i

jj

x

f
G

u





 and 

( )
( )

( )( )

i
i

jj

y

f
H

u





. 

where 
( )

( )

i

jG  and 
( )

( )

i

jH  are positive constants. These conditions guarantee the existence and 

uniqueness of the solution of the above system of equations (Jain et al, 1991). Further we 

assume that each ( ) 6( )iu C  , where ( )mC   denotes the class of functions of x and y 

whose partial derivatives upto order m are continuous in  .  

 The second order non-linear elliptic partial differential equations (PDEs) occur in the 

formulation of many applied problems in physics and engineering. There has been a 

considerable interest by many authors in the development of compact finite difference 

schemes for the solution of the linear as well as the non-linear elliptic boundary value 

problems (Yavneh, 1997), (Zhang, 1997, 1998), (Spotz and Carey, 1995), (Sakurai et al, 

2002), (Jain et al, 1994), (Saldanha, 2001), (Ananthakrishnaiah and Saldanha, 1995). The 

standard central difference schemes though are simple to apply and yield second order 

accuracy, they usually fail when applied to singular perturbation problems, specially when 

the perturbation parameter  (say) is small. (Jain et al, 1989) developed a compact fourth 

order discretization for elliptic equations with non-linear first derivative terms and constant 

coefficients using only 9 grid points, which was further extended to the system of elliptic 

PDEs with variable coefficients by (Jain et al, 1991) and (Mohanty, 1997). These schemes 

used equal mesh sizes in both the coordinate directions. (Mohanty et al, 2006) proposed an 

unequal mesh 9-point fourth order scheme for the solution of non-linear elliptic PDEs with 

variable coefficients. However, all these schemes required modification at the points of 

singularity. In this regard, (Mohanty and Singh, 2006) developed a high order arithmetic 

average discretization for the singularly perturbed 2D nonlinear problems. All the above 

schemes (Mohanty et al, 2006), (Jain et al, 1989), (Jain et al, 1991), (Mohanty, 1997) and 

(Mohanty and Singh, 2006) were uniform mesh schemes and required five function 

evaluations. Even the high order schemes would fail to give accurate results when the 

perturbation factor   is small. This is because using a constant mesh length, attaining 

convergence at all mesh points uniformly in   becomes difficult. For instance, we consider 

the one dimensional steady state convection diffusion equation  

                          ( )xx xu u f x                                                                                        (3) 

subject to the boundary conditions (0)u   and (1)u  . This equation models the 

temperature u(x) of a fluid flowing through a pipe with a constant velocity, say a (called the  
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convective velocity) where fluid has constant heat diffusion coefficient, say  . Then the 

perturbation parameter   is given by the equation / a  . Physically, we should expect 

difficulties in case where the convective velocity a overwhelms the diffusivity factor  , i.e. 

when 1  , since in this case it would be very difficult to maintain a fixed temperature (   

here) at the outflow of the tube. Mathematically, we expect trouble as 0   because in the 

limit 0  , the above equation (3) reduces to a first order equation ( ) 0xu f x   which 

allows only one boundary condition, rather than two. However, for 0  , no matter how 

small   is, we have a second order equation that needs two conditions. Thus as 0  , the 

solution tends towards a discontinuous function that jumps to the value   at the last 

possible moment. This region of rapid transition is called the boundary layer. It is from here 

that the need of choosing a variable mesh arises. In the past, some variable mesh methods 

have been developed for the solution of singularly perturbed two point boundary value 

problems by (Jain et al, 1983), (Mohanty, 2005) and (Kadalbajoo and Kumar, 2010). 

Recently, (Mohanty and Setia, 2012) have proposed a new nine point fourth order accurate 

numerical method based on off-step discretization on a constant mesh for the solution of the 

system of two dimensional nonlinear elliptic partial differential equations. In this paper, we 

design a high order variable mesh off-step discretization for the solution of the system of 

two-dimensional non-linear elliptic PDEs (1), using a constant mesh length k in y-direction 

and variable mesh lengths lh  in x-direction and 9 grid points of a single computational cell 

(see Fig.1). This method not only gives accurate results for small values of perturbation 

parameter, but is also relatively simple to apply as it requires only three function evaluations 

and can be directly applied to singular problems as well, without any modification.  

 This paper is organized as follows: In Section 2, the 2 2 3( )l lO k k h h  compact off-step  

discretization is described for the corresponding scalar elliptic boundary value problem. In 

Section 3, this discretization is derived and extended to the system of equations (1). In 

Section 4, we discuss the conditions for the convergence of the iterative methods to be 

applied to solve the tri-block-diagonal system of difference equations so obtained. In Section 

5, we give numerical examples to illustrate our method. Section 6 contains some concluding 

remarks on this paper. 

 

Figure 1:  Single Computational Cell 
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2. DESCRIPTION OF THE METHOD 

  
 For simplicity, we first consider the following two dimensional non-linear elliptic PDE 

                 
( , , , , )xx yy x yu u f x y u u u                                                                                    (4) 

 

defined in   subject to 

 

            0( , ) ( , )u x y u x y ;     ( , )x y                                                                               (5) 

 We discretize the region   with a rectangular mesh by taking a constant mesh length k 

> 0 in y - direction and variable mesh lengths lh  in x – direction so that each grid point is 

given by ( , )l mx y
 
where 0 1 2 10 . . . 1Nx x x x       , 1 1l l lh x x   , for l = 0(1)N with the 

mesh ratio 1( / )l l lh h 
 
> 0, for l = 1(1)N, and my mk , for m = 0(1)M+1, where N and M 

are positive integers such that (M+1)k = 1. 

         Further, let ,l mU  and ,l mu  be the exact and approximate solution values of ( , )u x y , 

respectively, at the grid point ( , )l mx y .  

At each grid point ( , )l mx y , equation (4) may be written as 

 , , , , ,( , , , , )xxl m yyl m l m l m xl m yl mU U f x y U U U  ,l mf                                      (6)         

We set the following approximations based on the approach of (Chawla and Shivakumar, 

1996). 

 1
2
, 1, ,

1

2
l m l m l mU U U                                                                                                      (7.1) 

2 2

1, , 1,
,

( 1)

(1 )

l m l l m l l m
xl m

l l l

U U U
U

h

 

 

   



                                                                             (7.2) 

 1
2
, 1, ,

1
xl m l m l m

l l

U U U
h

                                                                                                (7.3) 

 1
2
, , 1,

1
xl m l m l m

l

U U U
h

                                                                                                    (7.4) 

 , , 1 , 1

1

2
yl m l m l mU U U

k
                                                                                                   (7.5) 

 1
2
, 1, 1 1, 1 , 1 , 1

1

4
yl m l m l m l m l mU U U U U

k
                                                                          (7.6) 

 1, 1, 1 1, 1

1

2
yl m l m l mU U U

k
                                                                                               (7.7) 
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1, , 1,
,

2

2 (1 )

(1 )

l m l l m l l m
xxl m

l l l

U U U
U

h

 

 

     


                                                                        (7.8) 

 , , 1 , , 12

1
2yyl m l m l m l mU U U U

k
                                                                                       (7.9) 

 1, 1, 1 1, 1, 12

1
2yyl m l m l m l mU U U U

k
                                                                                (7.10) 

Further, we define 

1 1 1
1 1 2 2 2
2 2

, , ,, ( , , , , )l m xl m yl mml m l
f f x y U U U   

                                                                           (8) 

Let 

 1 1
2 2

2 3 3 2 3
2

, , ,, , ,

5 1 1 5 1

8 1 1 4 1

l l l l l
l m xxl m yyl ml m ll m l m

l l l

h h
U U f f h U U

  

  
 

       
         

       
      (9.1) 

   1 1
2 2

3

, , 1, 1, , ,2

(1 )
2

12(1 ) 6(1 )

l l
xl m xl m yyl m yyl ml l m l m

l l

U U h U U f f
 

 
   

             
        (9.2) 

3

, , 1, , 1,
2

(1 )
(1 )

2 (1 )

l
yl m yl m yl m yl m yl ml l

l l

U U U U U


 
 

 


      

                                       (9.3) 

Finally, we define 

, , ,, ( , , , , )l m xl m yl ml ml mf f x y U U U                                                                                       (10) 

      Then, at each internal grid point ( , )l mx y , the partial differential equation (4) is 

discretized by the following finite difference scheme : 

 

     
   1 1, 1 1, 1 2 1, 1 1, 1l m l m l m l mI U U I U U           3 , 1 , 1l m l mI U U   + 4 1,l mI U  5 1,l mI U   

6 ,l mI U  

    = 1 1
2 2

2

,, , ,

1

3 2

l l l
l ml l m l m l m

h
f f f T

 
  

  
    
  

, [ 1(1) , 1(1) ]l N m M           (11)                      

where 

                  2 2 2 3 5
, ( )l m l l lT O k h k h h   , and 

2 2 3 2

1 2 2

(1 )

6 12 (1 )
l l l l

l

I
h h

k k

 




 


,    2I 

2 3 2

2 2

(1 )

6 12 (1 )
l l l l l

l

h h

k k

  







,  

2 3 2

3 2 2

(1 ) (1 )

3 12
l l l l lh h

I
k k

   
  ,   

2 2 3 2

4 2 2

(1 )
1

3 6 (1 )
l l l l

l

h h
I

k k

 




  


, 

2 3 2

5 2 2

(1 )

3 6 (1 )
l l l l l

l

l

h h
I

k k

  





  


,  

2 3 2

6 2 2

2 (1 ) (1 )
(1 )

3 6
l l l l l

l

h h
I

k k

  


  
     

 
. 
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     We note that the difference method (11) is a nine-point formulae which can be 

conveniently expressed in the matrix form Au = B , where the coefficient matrix A  is tri-

block-diagonal. This system of difference equations so obtained can be solved by the 

Newton-Raphson method for the non-linear case and by Gauss-Siedal or Jacobi iteration 

method for the linear case [see (Kelly, 1995), (Varga, 2000), (Saad, 2003), (Hageman & 

Young 2004)]. 

 

3. DERIVATION PROCEDURE 

 

      At each grid point ( , )l mx y , let us denote 

 ,

,

l m

l m

f

U


 
  

 
,  ,

,

l m

x l m

f

U


 
  

 
,  ,

,

l m

y l m

f

U


 
    

 

          Simplifying the approximations (7.1) - (7.10), we obtain 

1
12
2

2 2
3

, ,,
( )

8

l l
l m xxl m ll m

h
U U U O h


 

                                                                                 (12.1) 

1
12
2

2
3

, ,,
( )

8

l
l m xxl m ll m

h
U U U O h 

                                                                                      (12.2) 

2
3

, , , ( )
6

l l
xl m xl m xxxl m l

h
U U U O h


                                                                                    (12.3) 

1
12
2

2 2
3

, ,,
( )

24

l l
xl m xxxl m lxl m

h
U U U O h


 

                                                                              (12.4) 

1
12
2

2
3

, ,,
( )

24

l
xl m xxxl m lxl m

h
U U U O h 

                                                                                  (12.5) 

2
, , ( )yl m yl mU U O k                                                                                                        (12.6) 

1
12
2

2 2
2 2 3

, ,,
( )

8

l l
yl m xxyl m l lyl m

h
U U U O k k h h


 

                                                              (12.7) 

1
12
2

2
2 2 3

, ,,
( )

8

l
yl m xxyl m l lyl m

h
U U U O k k h h 

                                                                   (12.8) 

2 2
1, 1, ( )yl m yl m lU U O k k h                                                                                            (12.9) 

2 2
1, 1, ( )yl m yl m lU U O k k h                                                                                          (12.10) 

, , ( )xxl m xxl m lU U O h                                                                                                     (12.11) 

2
, , ( )yyl m yyl mU U O k                                                                                                     (12.12) 
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2 2

1, 1, ( )yyl m yyl m lU U O k k h                                                                                        (12.13) 

2 2
1, 1, ( )yyl m yyl m lU U O k k h                                                                                        (12.14) 

Further by Taylor series expansion, we first obtain 

    
   1 1, 1 1, 1 2 1, 1 1, 1l m l m l m l mI U U I U U           3 , 1 , 1l m l mI U U   + 4 1,l mI U  5 1,l mI U   6 ,l mI U  

   = 1 1
2 2

2
2 2 5

,, ,

1
( )

3 2

l l l
l l m l ll m l m

h
f f f O k h h

 


 

  
     
  

,    [ 1(1) , 1(1) ]l N m M  .       (13) 

 

With the help of approximations (12.1) – (12.8), we obtain 

1 1
2 2

2 2
2 2 3 2 2 4

1, ,
( )

24

l l
l l l ll m l m

h
f f T O k k h h k h h


 

                                                        (14.1) 

1 1
2 2

2
2 2 3 2 2 4

1, ,
( )

24

l
l l l ll m l m

h
f f T O k k h h k h h 

                                                            (14.2) 

where  

           1 , , , , , ,3 3xxl m l m xxxl m l m xxyl m l mT U U U     . 

Now, let 

1 1
2 2

2 2 2 2
, , ,, 1 2 3 4, ,l m xxl m yyl ml m l l l ll m l mU U a h f a h f a h U a h U                                             (15.1) 

1 1
2 2

2 2
, , 1, 1, , ,1 2 3 4, ,( ) ( )xl m xl m yyl m yyl m xxl m yyl ml l l ll m l mU U b h f f b h U U b h U b h U        

        
(15.2) 

, , 1, , 1,(1 )yl m yl m yl m yl m yl ml lU U c U U U        
                                                       (15.3) 

where  ,  ( 1(1)4)q qa s b s q   and c are parameters to be suitably determined. 

       Now, with the help of (12.9)-(12.14), (14.1), (14.2), from (15.1)-(15.3), we obtain 

2
2 2 3

, , 2 ( )
6

l
l m l m l l

h
U U T O k h h                                                                                       (16.1) 

2
2 2 3

, , 3 ( )
6

l
xl m xl m l l

h
U U T O k h h                                                                                     (16.2) 

2
2 2 2 3

, , 4 ( )
6

l
yl m yl m l l

h
U U T O k k h h                                                                              (16.3) 

where 

         2 1 2 3 , 1 2 4 ,6( ) 6( )xxl m yyl mT a a a U a a a U       ,                                                                       

         
 3 1 , 1 2 , 3 , 4 ,3 (1 ) 3(1 )( 2 ) 6 6l l xxxl m l xyyl m xxl m yyl mT b U b b U b U b U           ,                          

         4 ,3 (1 )l l xxyl mT c U   .                                                                                                             
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Now, by the help of the approximations (16.1)-(16.3), from (10), we obtain 

2
2 2 2 3

, 5, ( )
6

l
l m l ll m

h
f f T O k k h h                                                                                    (17) 

where 

           5 2 , 3 , 4 ,l m l m l mT T T T     . 

Using (13), (14.1), (14.2) and (17) in (11), we obtain 

3
4 2 2 2 3 5

, 1 5

(1 ) (1 )
( )

72 36

l l l l
l m l l l lT T T h O k h k h h

     
      

 
                                         (18) 

 

        Thus, for the proposed difference method (11) to be of 2 2 3( )l lO k k h h  , we must have 

                        
3

1 5

(1 ) (1 )
0

72 36

l lT T
  

                                                                            (19)      

Equating to zero the coefficients of , ,, l m l m   and ,l m  in equation (19), we obtain 

3

1 2

15

8 1

l

l

a a




 
    

 
, 

3

3

1

1

l

l

a








, 

3

4

15

4 1

l

l

a




 
  

 
, 

3

2

(1 )

2 (1 )

l

l l

c


 


 


,
 

3

1 2

(1 )

6(1 ) 3(1 )

l l

l l

b
 

 

 
   

  
, 

3

2 2

(1 )

12(1 ) 6(1 )

l l

l l

b
 

 


 

 
, 3 4 0b b  . 

      The above values of  ,  ( 1(1)4)q qa s b s q   and c reduce 

2 2 2 3 5
, ( )l m l l lT O k h k h h   [ 1(1) , 1(1) ]l N m M   and thus we obtain the required difference 

scheme of 2 2 3( )l lO k k h h  .  

       Now, we generalize our method as follows: For the system of differential equations (1) 

subject to the Dirichlet boundary conditions (2), we set the following approximations: 

 1
2

( ) ( ) ( )
, 1, ,

1

2

i i i
l m l m l mU U U                                                                                                    (20.1) 

( ) 2 ( ) 2 ( )
( ) 1, , 1,

,

( 1)

(1 )

i i i
i l m l l m l l m

xl m

l l l

U U U
U

h

 

 

   



                                                                           (20.2) 

 1
2

( ) ( ) ( )
, 1, ,

1i i i
xl m l m l m

l l

U U U
h

                                                                                              (20.3) 

 1
2

( ) ( ) ( )
, , 1,

1i i i
xl m l m l m

l

U U U
h

                                                                                                  (20.4) 
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( ) ( ) ( )

, , 1 , 1

1

2

i i i
yl m l m l mU U U

k
                                                                                                 (20.5) 

 1
2

( ) ( ) ( ) ( ) ( )
, 1, 1 1, 1 , 1 , 1

1

4

i i i i i
yl m l m l m l m l mU U U U U

k
                                                                        (20.6) 

 
( ) ( ) ( )

1, 1, 1 1, 1

1

2

i i i
yl m l m l mU U U

k
                                                                                             (20.7) 

( ) ( ) ( )
( ) 1, , 1,

, 2

2 (1 )

(1 )

i i i
i l m l l m l l m

xxl m

l l l

U U U
U

h

 

 

 
    


                                                                      

(20.8) 

 
( ) ( ) ( ) ( )

, , 1 , , 12

1
2

i i i i
yyl m l m l m l mU U U U

k
                                                                                     

(20.9) 

 
( ) ( ) ( ) ( )

1, 1, 1 1, 1, 12

1
2

i i i i
yyl m l m l m l mU U U U

k
                                                                              

(20.10) 

  

1 1 1 1 1 1
1 1 2 2 2 2 2 2
2 2

1 1 1
2 2 2

( ) (1) (2) ( ) (1) (2) ( )( )
, , , , , ,,

(1) (2) ( )

, , ,

( , , , ,..., , , ,..., ,

                   , ,..., )

i n ni
l m l m l m xl m xl m xl mml m l

n

yl m yl m yl m

f f x y U U U U U U

U U U

      

  


                      (20.11)                                                               

 1 1
2 2

2 3 3 2 3( ) ( ) ( ) ( ) ( )( ) 2
, , ,, , ,

5 1 1 5 1

8 1 1 4 1

i i i i ii l l l l l
l m xxl m yyl ml m ll m l m

l l l

h h
U U f f h U U

  

  
 

       
         

       
      (20.12) 

   1 1
2 2

3( ) ( ) ( ) ( ) ( ) ( )

, , 1, 1, , ,2

(1 )
2

12(1 ) 6(1 )

i i i i i i
l l

xl m xl m yyl m yyl ml l m l m

l l

U U h U U f f
 

 
   

                     

(20.13)

  
3( ) ( ) ( ) ( ) ( )

, , 1, , 1,2

(1 )
(1 )

2 (1 )

i i i i i
l

yl m yl m yl m yl m yl ml l

l l

U U U U U


 
 

 

      
 

                                   (20.14) 

( ) (1) (2) ( ) (1) (2) ( ) (1) (2) ( )
( )

, , , , , , , , ,, ( , , , ,..., , , ,..., , , ,..., )
i n n n

i
l m l m l m xl m xl m xl m yl m yl m yl ml ml mf f x y U U U U U U U U U            (20.15) 

        Then, it can be easily verified that at each grid point ( , )l mx y ,[ 1(1) , 1(1) ]l N m M  , the 

given system of nonlinear elliptic PDEs (1) is discretized by 

    
   ( ) ( ) ( ) ( )

1 1, 1 1, 1 2 1, 1 1, 1

i i i i

l m l m l m l mI U U I U U           ( ) ( )

3 , 1 , 1

i i

l m l mI U U   + ( )

4 1,

i

l mI U 

( )

5 1,

i

l mI U   ( )

6 ,

i

l mI U  

   = 1 1
2 2

2 ( )( ) ( ) ( )

,, , ,

1

3 2

ii i i
l l l

l ml l m l m l m

h
f f f T

 
  

  
    
  

 , [ 1(1) , 1(1) ]l N m M                  (21) 

 

where 
( ) 2 2 2 3 5
, ( )
i

l m l l lT O k h k h h   .  
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   We observe that for the uniform mesh case, i.e. when 1l  , l=1(1)N, and 

1 2 1... Nh h h h    (say), the truncation error reduces to 2 2 2 4 6
, ( )l mT O k h k h h    and 

thus, all the methods discussed above are of 2 2 2 4( )O k k h h  . 

 

4. CONVERGENCE OF THE ITERATIVE METHODS 

 Consider the following elliptic partial differential equation 

xx yy xu u u  , ( , )x y                                                                                (22) 

     The above equation (22) is the steady state two-dimensional convection-diffusion 

equation, where (1/ ) 0    is a constant, with   (the perturbation parameter) being the 

ratio of convective velocity to the diffusion coefficient.  

     We apply the difference scheme (11) with , 0l mT   to the above equation, considering 

the constant mesh case by taking 1l  , for l =1(1)N and letting  p = /k h  and R= ( / 2)h  > 

0, which is called the cell Reynolds number,  to obtain 

             
2 2 2 2

1, 1 , 1 1, 1 1,(1 ) 10 (1 ) (12 2 12 4 2 )l m l m l m l mR u u R u p p R p R R u             
     

            
2 2 2

,(24 20 8 ) l mp p R u   2 2 2 2

1,(12 2 12 4 2 ) l mp p R p R R u     
 

            1, 1(1 ) l mR u    , 110 l mu  1, 1(1 ) 0l mR u     ,[ 1(1) , 1(1) ]l N m M                         (23) 

 

     The above is a system of NM number of linear equations in NM number of unknowns, 

which may be expressed in the matrix form as =Au 0 , where 

 

         

T

1,1 2,1 ,1 1,2 2,2 ,2 1, 2, ,, ,..., , , ,..., ,......, , ,..., N N M M N Mu u u u u u u u u  =u ,  

        
 

NM NM
=A P,  Q,  P ,         (Tri-block-diagonal Matrix) 

         
[1 ,  10,  1 ]N NR R   P ,          (Tri-diagonal Matrix)  

         
2 2 2 2 2 2 2 2 2 2 2[12 2 12 4 2 ,  - (24 20 8 ),  12 2 12 4 2 ]N Np p R p R R p p R p p R p R R          =Q    

               (Tri-diagonal Matrix) 

  
 

 Now, applying the Jacobi Iteration Method to the above system of equations, we obtain 

 

    
2 2 2 ( 1)

,(24 20 8 ) s

l mp p R u     

    
( ) ( ) ( ) 2 2 2 2 ( )

1, 1 , 1 1, 1 1,(1 ) 10 (1 ) (12 2 12 4 2 )s s s s

l m l m l m l mR u u R u p p R p R R u               

   
2 2 2 2 ( ) ( ) ( ) ( )

1, 1, 1 , 1 1, 1(12 2 12 4 2 ) (1 ) 10 (1 )s s s s

l m l m l m l mp p R p R R u R u u R u                           (24) 

 
where s = 0, 1, 2,…  
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         We examine the stability of (24) by assuming that an error ( )

,

s

l m  exists at each grid 

point ( , )l mx y  at the sth iteration. The corresponding error equation at the sth iteration is 

given by 

 

 

   
2 2 2 ( 1)

,(24 20 8 ) s

l mp p R      

     
( ) ( ) ( ) 2 2 2 2 ( )

1, 1 , 1 1, 1 1,(1 ) 10 (1 ) (12 2 12 4 2 )s s s s

l m l m l m l mR R p p R p R R                  

   
2 2 2 2 ( ) ( ) ( ) ( )

1, 1, 1 , 1 1, 1(12 2 12 4 2 ) (1 ) 10 (1 )s s s s

l m l m l m l mp p R p R R R R                              (25) 

 
 

We analyze the behavior of the error ( )

,

s

l m  by assuming it to be of the form 

 

        ( )

, sin sin
1 1

s s l m

l m

al bm
A B

N M

 
 

   
    

    
,     1 ,  1a N b M                                     (26) 

 
where A and B are arbitrary constants and   is the propagating factor which determines the 

rate of growth or decay of the errors. The necessary and sufficient condition for the iterative 

method to be stable is 1  . 

 

   Using (26) in (25), the propagating factor for the Jacobi iteration method is obtained as 

 

 

J =   

 

2

2 2 4 4 2 2 2

1/ 2
2 2

2 2 2 2 2 2 2

cos (1 ) cos 6 1 4 4 cos 6 1
1 1 1

cos 6 1 2 cos 6 6 5 2
1 1

a b b
R p p R p R p

N M M

b b
p p R R p R R p p R

M M

  

 

          
                           

        
                       

 

            
 2 2 2

5cos
1

6 5 2

b

M

p p R

 
 

 
 

,  1 ,  1a N b M                                                              (27) 

 

 

Thus, the Jacobi Iteration method is stable for those values of R such that 1J  . 
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Fig.2. Directed Graph  

 

 

 

     Similarly, applying the Gauss-Siedal iteration method to (23) and assuming the error at 

each grid point ( , )l mx y  at the sth iteration to be of the form (26), the corresponding 

propagation factor GS
 
is given by the equation 

 

    

 3 2 2 2 2 2 2

1
10 (1 )(6 1 2 6 )cos b

M
R p p R p R R    


          + 

 2 2 2 2

1
25 (1 )cos b

M
R  


    

2 2 2 2 2 2 2 2 2(6 1 2 6 )(6 1 2 6 )p p R p R R p p R p R R           

2 2 2 2(1 ) 6 1 2R p p R     2

1
6 )cos b

M
p R R 


  =0,1 ,  1a N b M    ,   (28)                                                    

where  1/ 2

GS  ,  
 1

2 2 2

cos

6 5 2

a
N

p p R



 


 
 and 

 1

2 2 2

cos

6 5 2

b
M

p p R



 


 
.  

Thus, the Gauss-Siedal iteration method is stable for those values of R such that 1GS  . 

   Now, for the coefficient matrix A to be diagonally dominant, we must have 

 2 2 2 2 2 224 20 8 1 10 1 (12 2)(1 ) 4p p R R R p R p R            

 2 2 2(12 2)(1 ) 4 1 10 1p R p R R R                                       (29) 
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       Assuming the diffusion dominated case i.e. 1R   and taking 1/ 6p  , it is easy to see 

that relation (29) is satisfied. Also, clearly, strict inequality holds for the first row of the 

matrix A. Hence A  is diagonally dominant. Also, the Directed Graph of A is strongly 

connected (see Fig. 2). Hence the matrix A is irreducibly diagonally dominant for 1R   and 

1/ 6p   (Varga, 2000). Thus, under these conditions, Jacobi and Gauss-Siedal Iteration 

methods are convergent for any initial guess. 

 

 

5. COMPUTATIONAL IMPLEMENTATION 

 

 We divided the interval [0, 1] in y-direction into (M+1) parts of equal lengths k > 0, so 

that my mk for m = 0(1)M+1. Further, the interval [0, 1] in x-direction is divided into 

(N+1) parts with 0 1 2 10 . . . 1Nx x x x       , where 1 1l l lh x x   , for l = 0(1)N and 

1( / )l l lh h 
 
> 0, for l = 1(1)N. This discretizes the solution domain   with grid points 

given by ( , )l mx y , l = 0(1)N+1, m = 0(1)M+1. 

Now,  1 1 0 1 1 1 0 ( ) ( ) . . . ( )N N N N Nx x x x x x x x            

    1 1. . .N Nh h h     

  1 1 2 1 2 1(1 . . . ... )N h          ,                                                        (30) 

which gives the value of the first step length in x-direction as : 

 1 1 1 2 1 21/(1 . . . ... )Nh                                                                              (31) 

         Using the above value, we are able to determine the values of subsequent step-lengths 

as 1l l lh h  , l = 1(1)N. Hence we determine each grid point ( , )l mx y  of the rectangular 

mesh. 

For the sake of simplicity, we assume here that l   (constant) for all l = 1(1)N, so that  

1

1 (1 ) /(1 )Nh                                                                                                     (32) 

      Thus having prescribed the total number of mesh points in the x- direction, say, N+2, we 

can determine the first step length on the left using (32), and further step lengths are 

determined by using the relation 1l lh h  , 1(1) .l N  For uniform mesh case, i.e., for 

1l lh h   = h, l = 1(1)N, we obtain the corresponding 2 2 2 4( )O k k h h   finite difference 

scheme. 

        Substituting the approximations  (20.2), (20.5), (20.8) and (20.9) in the given system of 

differential equations (1), we obtain a variable mesh method of 2( )lO k h as 
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( ) ( ) (1) (2) ( ) (1) (2) ( )( ) (1) (2) ( )
, , , , , , , ,, , ,( , , , ,..., , , ,..., , , ,..., )

i i n ni n
xxl m yyl m xl m xl m xl m yl m yl m yl ml m l m l m l mU U f x y U U U U U U U U U   

                             + 2( )lO k h ;                [l = 1(1)N, m = 1(1)M]                                       (33) 

 

 Note that, for constant mesh case, i.e., for l 1, the method (33) becomes a constant 

mesh method of  2 2( )O k h . In this section, we have solved two linear and two non-linear 

problems to which the exact solutions have been prescribed. The right hand side functions 

and the boundary conditions are determined using the exact solutions. We have compared 

the numerical results of the proposed method (21) with the corresponding numerical results 

obtained by using the method (33). The linear difference equations are solved by the Gauss-

Siedel method and the non-linear ones by the Newton-Raphson method. The iterations were 

terminated once the absolute error tolerance 
1210  was achieved. All the computations are 

carried out using MATLAB programming language. 

 

Problem 1: To solve the convection-diffusion equation (22) whose exact solution is given 

by 

2 2
sin

( , ) 2 sinh sinh (1 )
sinh

x
y

u x y e e x x

 


 




  
 
 
 

, where 
2

2 2

4


   . The maximum 

absolute errors (MAE) of u  for 0.92   and 1   are tabulated in Table 1a and 1b 

respectively. Figure 3 gives a comparison of the plots of the exact and numerical solutions 

for 1000  . 

 
Problem 2: (Poisson’s equation in polar coordinates) 

( , )rr r zzu u u G r z
r


   ,    0 , 1r z                                                     (34)  

                                                           
 For 1  , the above equation represents the two-dimensional Poisson’s equation in 

cylindrical polar coordinates in r-z plane.  The exact solution is given by cosh coshu r z . 

The MAE of u  with 1.4   are tabulated in Table 2a for 1   and 2. Table 2b gives the 

MAE of u with 1  for fixed value of mesh ratio parameter λ =
2/k h =20. Figure 4 gives 

the plots of the exact and numerical solutions of Problem 2. 

 
Problem 3:  (Non-linear Convection Equation) 

             
( ) ( ) ( , )xx yy x yu u u u u g x y     , 0 , 1x y                                                 (35)  

 The exact solution is given by  2sinx y
u e


 . The MAE of u  for variable and constant  

mesh cases are tabulated in Table 3a & 3b respectively. Figure 5 gives a comparison of the 

plots of the exact and numerical solutions of Problem 3. 
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Problem 4:   (2D steady-state Navier Stokes’ model equations in Cartesian coordinates) 

 

         
1 ( ) ( , )xx yy x yu u uu vu f x y   
eR , 0 , 1x y                                                          (36a)  

        
1 ( ) ( , )xx yy x yv v uv vv g x y   
eR ,  0 , 1x y                                                          (36b) 

                         0 = x yu v                                                                                                 (36c) 

 where 0eR   is a constant and is called the Reynolds number. The exact solutions are  

sin( )sin( )u x y  , cos( )cos( )v x y  . The MAEs of u  and v  are tabulated in Table 4a 

for 0.92   and in Table 4b for 1   and fixed value of mesh ratio parameter λ = 20. 

Figure 6 gives a comparison of the plots of the exact and numerical solutions. 

 

 

Table 1a: The MAE ( 0.92  ) – variable mesh case 

                Proposed 
2 2 3

( )l lO k k h h  methods    
2

( )lO k h  method 

 ( , )N M   =100  =1000  = 1400  =100  =1000
  = 1400 

(30,30) 6.1173(-04) 2.6871(-01) 4.1026(-01) 9.1907(-01) 9.7583(-01) 9.7351(-01) 

(40,40) 9.2476(-05) 4.5122(-02) 1.0026(-01) 8.5900(-01) 9.5874(-01) 9.7085(-01) 

(50,50) 3.9142(-05) 3.3946(-03) 1.0118(-02) 8.0263(-01) 9.3978(-01) 9.4924(-01) 

(60,60) 2.4982(-05) 2.3368(-04) 5.9052(-04) 7.5800(-01) 9.0396(-01) 9.2049(-01) 

(70,70) 1.8386(-05) 3.3685(-05) 6.5273(-05) 7.2960(-01) 8.6352(-01) 8.8457(-01)  

(80,80) 1.4568(-05) 1.1038(-05) 1.5365(-05) 7.1495(-01) 8.2419(-01) 8.4427(-01) 

    
 
 

 

 
 

Table 1b: The MAE ( 1  ) – constant mesh case 

                Proposed 
2 2 2 4

( )O k k h h  methods    
2 2

( )O k h  method 

 h   =100  =1000  = 1400  =100  =1000
  = 1400 

 1
30

 4.0098(-02) 7.0453(-01) 7.7859(-01) Oscillations Oscillations Oscillations 

 1
40

 1.7223(-02) 6.2489(-01) 7.1473(-01) Oscillations Oscillations Oscillations 

 1
50

 8.2806(-03) 5.5427(-01) 6.5603(-01) Oscillations Oscillations Oscillations 

 1
60

 4.3251(-03) 4.9167(-01) 6.0216(-01) Oscillations Oscillations Oscillations 

 1
70

 2.4556(-03) 4.3622(-01) 5.5273(-01) Oscillations Oscillations Oscillations  

 1
80

 1.4675(-03) 3.8712(-01) 5.0738(-01) Oscillations Oscillations Oscillations    
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     A comparison of the numerical results in Tables 1a & 1b indicates that a variable 

mesh produces significantly better results for large values of   than the corresponding 

uniform mesh case. On the other hand, although the lower order variable mesh method 

generates oscillation free results, the corresponding uniform mesh method fails totally.  
 

Table 2a: The MAE ( 1.4  ) - variable mesh case 

                Proposed 
2 2 3

( )l lO k k h h  methods    
2

( )lO k h  method 

 ( , )N M   =1  =2  =1  =2 

(30,30) 3.4369(-05) 5.1954(-05) 7.6763(-02) 1.2481(-01)  

(40,40) 3.0933(-05) 4.7884(-05) 7.6952(-02) 1.2578(-01) 

(50,50) 2.9326(-05) 4.6155(-05) 7.6990(-02) 1.2610(-01) 

(60,60) 2.8463(-05) 4.5383(-05) 7.6998(-02) 1.2620(-01) 

(70,70) 2.7938(-05) 4.4922(-05) 7.7007(-02) 1.2624(-01) 

(80,80) 2.7600(-05) 4.4617(-05) 7.7004(-02) 1.2625(-01) 

 

Table 2b: The MAE ( 1,  20   ) – constant mesh case 

                Proposed 
2 2 2 4

( )O k k h h  methods    
2 2

( )O k h  method 

   h                     =1  =2  =1  =2 

  1
10

 3.5818(-04) 3.7441(-04) Oscillations Oscillations  

  1
20

 2.3422(-05) 2.4239(-05) Oscillations Oscillations   

  1
40

                1.4823(-06) 1.5200(-06) Oscillations Oscillations  

    

 

Table 3a: The MAE ( 0.92  ) – variable mesh case 

                Proposed 
2 2 3

( )l lO k k h h  methods    
2

( )lO k h  method 

( , )N M   =0.1  =0.01  =0.1  =0.01 

(30,30) 2.7145(-04) 8.0162(-04) 1.3032(-01) 2.4512(-01) 

(40,40) 1.5411(-04) 4.9423(-04) 1.2397(-01) 2.2878(-01) 

(50,50) 1.0010(-04) 3.7439(-04) 1.2138(-01) 2.1490(-01) 

(60,60) 7.0922(-05) 3.3317(-04) 1.2020(-01) 2.0296(-01) 

(70,70) 5.3450(-05) 3.1724(-04) 1.1957(-01) 1.9230(-01) 

(80,80) 4.2179(-05) 3.0890(-04) 1.1938(-01) 1.8249(-01) 
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Table 3b: The MAE ( 1,  20   )– constant mesh case 

                Proposed 
2 2 2 4

( )O k k h h  methods    
2 2

( )O k h  method 

   h   =0.1  =0.01  =0.1  =0.01 

   1
10

 1.0281(-02) 9.7481(-02) Oscillations Oscillations 

   1
20

 6.1051(-04) 1.1025(-03) Oscillations Oscillations 

   1
40

 3.8190(-05) 6.2725(-05) Oscillations Oscillations 

 

 

 

 

 

Table 4a: The MAE ( 0.92  )– variable mesh case 

                Proposed 
2 2 3

( )l lO k k h h  methods    
2

( )lO k h  method 

 ( , )N M  eR  =10 eR  =50 eR  =100 eR =10 eR  =50 eR =100 

 (50,50) u 2.2913(-04) 8.0941(-04) 3.4184(-03) 5.6489(-01) Oscillations

 Oscillations 

 v 1.4789(-04) 1.8284(-03) 4.9054(-03) 1.7010(-01) Oscillations

 Oscillations 

(60,60) u 1.6704(-04) 7.7948(-04) 3.1933(-03) 5.6227(-01) Oscillations

 Oscillations 

 v 1.2777(-04) 1.6766(-03) 4.5701(-03) 1.6940(-01) Oscillations

 Oscillations 

(70,70) u 1.2995(-04) 7.6902(-04) 3.1160(-03) 5.6106(-01) Oscillations

 Oscillations 

 v 1.1651(-04) 1.5934(-03) 4.3827(-03) 1.6903(-01) Oscillations

 Oscillations 

(80,80) u 1.0613(-04) 7.6602(-04) 3.0840(-03) 5.6052(-01) Oscillations

 Oscillations 

 v 1.0952(-04) 1.5437(-03) 4.2679(-03) 1.6884(-01) Oscillations

 Oscillations 
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Table 4b: The MAE ( 1,  20   )– constant mesh case 

                Proposed 
2 2 2 4

( )O k k h h  methods       
2 2

( )O k h  method 

     h  eR  =10 eR  =50 eR  =100 eR =10 eR  =50

 eR =100 

    1
20

 u 1.2387(-03) 3.2983(-03) 5.0097(-03) Oscillations Oscillations

 Oscillations 

 v 4.8642(-04) 2.6024(-03) 5.2111(-03) Oscillations Oscillations

 Oscillations 

    1
40

 u 7.7636(-05) 2.0260(-04) 3.0227(-04) Oscillations Oscillations

 Oscillations 

 v 3.0524(-05) 1.5937(-04) 3.1592(-04) Oscillations Oscillations

 Oscillations 

    

         For the fixed value of mesh ratio parameter 
2/k h  , i.e., 

2k h , the uniform 

mesh 2 2 2 4( )O k k h h   method becomes fourth order accurate in space. This order of 

accuracy can be verified from Tables 2b, 3b and 4b, using the formula 1 2

1 2

log( / )

log( / )

h hE E

h h
, 

where 
1hE  and 

2hE  are the MAEs for two uniform mesh widths 1h  and 2h , respectively.  

For example, in Table 3b, let us choose h1=1/20, h2=1/40,  0.1 with the corresponding 

MAEs 6.1051E-04 and 3.8190E-05. Using above formula it is easy to verify that the 

order of accuracy of the proposed method indeed is 3.99  4.0. Note that, the above 

formula can be used only in constant mesh case and cannot be used to calculate the order 

of accuracy in variable mesh case. 

 

  
  Exact Solution   Numerical Solution 

Figure 3: Exact and Numerical Solution of Convection-Diffusion Equation (22) at 1000  . 
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  Exact Solution   Numerical Solution 

Figure 4: Exact and Numerical Solution of Poisson’s Equation (34) in cylindrical Polar coordinates in r-z 

plane. 

 

 

 

      
                     Exact Solution                                  Numerical Solution 

Figure 5: Exact and Numerical Solution of Non-linear convection-Diffusion Equation (35) at 0.01  . 
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  Exact Solution u  Numerical Solution u 

    

  Exact Solution v  Numerical Solution v 

Figure 6: Exact and Numerical Solutions of Navier Stokes Equations in Cartesian Coordinates (36) at 

100
e

R  . 
 

 
6. CONCLUDING REMARKS 

 

  In this paper, we have developed a high order finite difference method based on off-step 

discretization for the system of 2D non-linear elliptic boundary value problems on a variable 

mesh, using 9 grid points and 3 function evaluations. This new variable mesh strategy 

results in solving the tri-block-diagonal system of difference equations. Numerical 

experiments have been made to compare the proposed variable mesh methods with the 

variable mesh method of 2( )lO k h . We have solved four benchmark problems of physical 

significance. We observed that unlike the case of high order constant mesh techniques, our 

methods work successfully for the small values of the perturbation parameter   for the 

solution of the steady state convection diffusion equation. The numerical results show that 

the proposed methods do not produce any numerical oscillations when applied to the Navier 

Stokes’ model equations for high values of Reynolds number, whereas the corresponding 

lower order variable mesh method is unstable for large Reynolds number. 
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